Modellhafte Erarbeitung einer Gesamtbewertung für die Herstellung der Durchgängigkeit am Beispiel der Ilm

"Durchgängigkeitskonzept Ilm"
Modellhafte Erarbeitung einer Gesamtbewertung für die Herstellung der Durchgängigkeit der für Thüringen ausgewiesenen „Schwerpunktgewässer Durchgängigkeit“ am Beispiel der Ilm

„Durchgängigkeitskonzept Ilm“

Erläuterungsbericht

Auftraggeber:
Thüringer Landesanstalt für Umwelt und Geologie
Göschwitzer Straße 41
07745 Jena

Bearbeiter:
Christof Bauerfeind
Sina Krischer
Rita Keuneke
Ulrich Dumont

Ingenieurbüro Floecksmühle
Bachstr. 62-64
52066 Aachen
Tel.: 0241 / 94986-0
Fax: 0241 / 94986-13

Jena, November 2011
Inhaltsverzeichnis

1 Veranlassung und Aufgabenstellung...4

2 Hydrologische Grundlagen der Ilm..6

3 Dokumentation und Ersteinschätzung des Ist-Zustands...8

4 Maßnahmenvorschläge ...9

4.1 Allgemeine Planungsgrundlagen und Vorgehensweise.....................................9

4.2 Planungsgrundlagen für Fischaufstiegsanlagen ..11

4.3 Planungsgrundlagen für Fischabstiegsanlagen ...11

4.4 Übersicht Maßnahmenvorschläge ..12

4.4.1 Flussaufwärtsgerichtete Durchgängigkeit ..12

4.4.2 Flussabwärtsgerichtete Durchgängigkeit ...12

4.5 Kostengrobschätzung ...13

4.5.1 Flussaufwärtsgerichtete Durchgängigkeit ..13

4.5.2 Flussabwärtsgerichtete Durchgängigkeit ...15

4.6 Ökologische Abflüsse..16

4.6.1 Mindestabfluss in Ausleitungsstrecken..16

4.6.2 Betriebsdurchfluss von Fischaufstiegsanlagen..17

4.6.3 Betriebsdurchfluss von Fischabstiegsanlagen...19

4.7 Auswirkungen auf die Wirtschaftlichkeit ...20

4.7.1 Allgemeines ..20

4.7.2 Verfahrensbeschreibung ..21

4.7.3 Reduzierung der Betriebszeit durch Turbinenmanagement......................21

4.7.4 Reduzierung der Nutzfallhöhe durch erhöhte Verluste an Fischschutzrechen...22

4.7.5 Erhöhte Betriebskosten für die Reinigung von Fischschutzrechen und Abstiegsanlagen ...22

4.7.6 Fazit ..23

5 Bewertung des ökologischen Zustands hinsichtlich Durchgängigkeit und Lebensraumverlust ...24
5.1 Grundlagen ... 24
5.2 Flussaufwärts gerichtete Durchgängigkeit ... 27
 5.2.1 Großräumige Auffindbarkeit ... 27
 5.2.2 Kleinräumige Auffindbarkeit ... 30
 5.2.3 Passierbarkeit ... 32
 5.2.4 Gesamtabschätzung Durchgängigkeit aufwärts am Standort .. 33
 5.2.5 Erreichbarkeitsrate der Areale ... 36
5.3 Flussabwärts gerichtete Durchgängigkeit ... 36
 5.3.1 Großräumige Auffindbarkeit ... 37
 5.3.2 Schutzwirkung von mechanischen Barrieren und kleinräumige Auffindbarkeit .. 38
 5.3.3 Passierbarkeit und Schädigung beim Abstieg über das Wehr .. 40
 5.3.4 Schädigung beim Abstieg durch die WKA .. 42
 5.3.5 Gesamtabschätzung Durchgängigkeit abwärts am Standort .. 44
5.4 Gewässerbezogene Bewertung für Auf- und Abstieg .. 45
 5.4.1 Ergebnisse der gewässerbezogenen Raten ... 47
5.5 Beeinträchtigung des Lebensraumes durch Stau und Ausleitung ... 48
 5.5.1 Rückstau ... 49
 5.5.2 Ausleitung .. 50
 5.5.3 Freie Fließstrecke ... 51
 5.5.4 Beeinträchtigung des aquatischen Lebensraumes .. 51
 5.5.5 Randbedingungen für die Betrachtung der Ilm .. 52
 5.5.6 Ergebnisse des Lebensraumverlusts .. 52
6 Prüfung von Querbauwerken entsprechend § 35 WHG .. 54
 6.1 Veranlassung .. 54
 6.2 Methodik ... 55
 6.2.1 Prüfkriterien .. 55
 6.2.2 Grobschätzung für Ausbauleistung und Jahresarbeit .. 56
 6.2.3 Grobschätzung der Investitionskosten .. 57
 6.2.3.1 Grundlegendes .. 57
Veranlassung und Aufgabenstellung

Im Zuge der Umsetzung der EG-WRRL wurden in Thüringen Oberflächenwasserkörper ausgewiesen, in denen der Schwerpunkt der Maßnahmen in der Herstellung der Durchgängigkeit liegt (Schwerpunktwasser Durchgängigkeit). Für die Umgestaltung der Querbauwerke und Wasserkraftanlagen (WKA) wurden Mindeststandards zur Herstellung der Durchgängigkeit erarbeitet („Fachliche Anforderungen zur Herstellung der Durchgängigkeit in Thüringer Fließgewässern“; im weiteren als TLUG 2009 bezeichnet). Neben der Betrachtung der Einzelbauwerke ist zusätzlich eine Gesamtbetrachtung der jeweiligen Gewässer erforderlich, um eine Einschätzung erforderlicher Maßnahmen zur Zielerreichung der WRRL vornehmen zu können. Für die einzelnen Standorte können sich daraus auch höhere Anforderungen ergeben.

Die Maßnahmen für Wiederherstellung der Durchgängigkeit werden wie folgt differenziert:

- Die flussaufwärts gerichtete Passierbarkeit muss für die gesamte potenziell natürliche Fischfauna realisiert werden.
- Bei der flussabwärts gerichteten Passierbarkeit sind die diadromen und die geschützten/gefährdeten Arten in besonderer Weise zu berücksichtigen.

Einschränkungen bei der Passierbarkeit der Standorte (flussauf- und flussabwärts) haben entlang der Wanderrouten der Fische eine kumulative Wirkung. Diese wird durch die Erreichbarkeitsrate der Laich- bzw. Aufwuchsorte (bei der flussaufwärts gerichteten Wanderung) und die kumulierten Abstiegsrate an der Mündung der Ilm in die Saale (bei der flussabwärts gerichteten Wanderung) ausgedrückt. Als Grundlage für die Ermittlung dieser Raten wurden die Aufstiegs- und die an den Einzelstandorten ermittelt.

Die vorliegende Studie wurde für das Gewässer Ilm erstellt und soll hinsichtlich Form und Inhalt als Vorlage für die Bearbeitung der weiteren Schwerpunktwässer „Durchgängigkeit“ in Thüringen dienen. Ausgangspunkt für die Erarbeitung von Maßnahmenvorschlägen war die Bewertung der Durchgängigkeit im Ist-Zustand.

An der Ilm befinden sich insgesamt 70 Querbauwerke, an denen 22 WKA installiert sind bzw. sich im Bau befinden. Im Zuge der Erarbeitung des Gewässerentwicklungsplans für die Ilm wurden bereits die vorhandenen Daten zu den Querbauwerken erfasst und übergeben. Die für die Abschätzung der Funktion vorhandener Fischaufstiegs-, Fischschutz- und Fischabstiegsanlagen sowie zur Bewertung der Schädigungsarten erforderlichen spezifischen Daten an den Wasserkraftanlagen wurden während der Bearbeitung der Untersuchung ermittelt. Nicht zu beschaffende Daten wurden bei der Besichtigungen der Standorte fachlich begründet eingeschätzt.

Für die Wasserkraftstandorte wurden die Höhe der ggf. erforderlichen ökologischen Mindestabflüsse und die daraus folgenden Auswirkungen auf die Vergütung untersucht.

Für das gesamte Gewässer wurden die flussauf- und flussabwärtsgerichteten Erreichbarkeitsraten im Planzustand und die Beeinträchtigungen der Ilm durch Stau und Ausleitungsstrecken bewertet und diesbezügliche Maßnahmen zur Erreichung eines guten ökologischen Zustands untersucht (z.B. Notwendigkeit des Rückbaus von Querbauwerken). In einem zweiten Schritt wurden die vorgeschlagenen Maßnahmen im Planzustand variiert, um Möglichkeiten für eine bessere Erreichung des guten ökologischen Zustands zu ermitteln.
Neben den Betrachtungen zur Durchgängigkeit wurde entsprechend § 35 WHG geprüft, ob die Standorte der Querbauwerke ein zusätzliches technisch-wirtschaftliches Wasserkraftpotenzial besitzen und ob durch dessen Nutzung Widersprüche bzw. Auswirkungen hinsichtlich der Erreichbarkeit des guten ökologischen Zustandes bestehen.

Zum Austausch der umfangreichen Daten wurde eine Internet-Plattform eingerichtet.

2

Hydrologische Grundlagen der Ilm

Für die Bewertung und Planung von Anlagen am Gewässer ist die Kenntnis der Hydrologie, d.h. des Wasserdargebots des jeweiligen Fließgewässers von wesentlicher Bedeutung. Falls vorhanden, werden für die Planungen über einen langen Zeitraum gemessene hydrologische Daten verwandt.

Für die Ilm können wasserwirtschaftliche Daten den Gewässerkundlichen Jahrbüchern (Elbegebiet Teil I 2007), in denen die Messungen der amtlichen Pegel veröffentlicht werden, entnommen werden.

Für das Planungsgebiet sind Angaben für folgende drei Pegel enthalten:

- Niedertrebra, Flusskilometer 10, Einzugsgebietsgröße 894,3 km²
- Mellingen, Flusskilometer 53,9, Einzugsgebietsgröße 627 km²
- Gräfinau-Angstedt, Flusskilometer 108, Einzugsgebietsgröße 154,8 km²

Die Aufzeichnungen dieser drei Pegel bilden die Grundlage für die Ermittlung der Abflüsse an den Standorten.

Da bis zur Pegelmessstelle einige weitere Gewässer in die Ilm münden und somit das Abflussverhalten beeinflussen, wurden die Einzugsgebietsgrößen der Ilm in Höhe des jeweiligen Standorts und dem dazu nächsten Pegel ins Verhältnis gesetzt. Mit diesem Faktor wurden die Hauptwerte und die Dauerlinie am betrachteten Ilmkilometer auf der Grundlage der Werte des jeweiligen Pegels berechnet:

\[Q_{\text{Wehr}} = Q_{\text{Pegel}} \cdot \frac{AE_{\text{Wehr}}}{AE_{\text{Pegel}}} \]

mit:
- \(Q_{\text{Wehr}} \) = jeweiliger Abfluss am Standort
- \(AE_{\text{Wehr}} \) = Einzugsgebietsgröße des Standorts
- \(Q_{\text{Pegel}} \) = jeweiliger Abfluss am Pegel
- \(AE_{\text{Pegel}} \) = Einzugsgebietsgröße des Pegels

Die Abflussdaten der Standorte, die zwischen zwei Pegeln liegen, wurden mit Hilfe dieser Formel berechnet.
Durchgängigkeitskonzept Ilm

\[Q_{\text{Wehr}} = Q_{\text{OWPegel}} + \left(Q_{\text{UWPegel}} - Q_{\text{OWPegel}} \right) \times \frac{A_{\text{EWehr}} - A_{\text{EOWPegel}}}{A_{\text{EUWPegel}} - A_{\text{EOWPegel}}} \]

mit:
- \(Q_{\text{Wehr}} \) = jeweiliger Abfluss am Standort
- \(A_{\text{EWehr}} \) = Einzugsgebietsgröße am Standort
- \(Q_{\text{OWPegel}} \) = jeweiliger Abfluss am oberwasserseitigen Pegel
- \(Q_{\text{UWPegel}} \) = jeweiliger Abfluss am unterwasserseitigen Pegel
- \(A_{\text{EOWPegel}} \) = Einzugsgebietsgröße am oberwasserseitigen Pegel
- \(A_{\text{EUWPegel}} \) = Einzugsgebietsgröße am unterwasserseitigen Pegel

In Tab. 2-1 sind die relevanten Abflusswerte der drei Pegel der Ilm und beispielhaft von drei Standorten dargestellt. Die Abflüsse des Standorts IL02 Wehr Saline Bad Sulza (Lage oberwasserseitig Niedertrebra) sind auf den Pegel Niedertrebra bezogen und die Abflüsse des Standorts IL11 Mühle Vent Mattstedt (Lage zwischen Niedertrebra und Mellingen) wurden anhand der Pegel Niedertrebra und Mellingen ermittelt. Eine Auflistung der Abflussdaten aller Standorte befindet sich in Anlage 1.

Die Einzugsgebietsgrößen der meisten Standorte wurden von der TLUG zur Verfügung gestellt. Fehlende Daten wurden anhand der Gewässerkilometrierung ergänzt.

Tab. 2-1: Abflusswerte an den drei Pegeln und beispielhaft an zwei Standorten (Jahresreihe 1923 – 2007)

<table>
<thead>
<tr>
<th>Standort bzw. Pegel</th>
<th>(A_{E}) km²</th>
<th>MNQ m³/s</th>
<th>(Q_{30}) m³/s</th>
<th>MQ m³/s</th>
<th>(Q_{330}) m³/s</th>
<th>MHQ m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL02 Wehr Saline Bad Sulza</td>
<td>916</td>
<td>1,86</td>
<td>2,01</td>
<td>6,71</td>
<td>13,5</td>
<td>46,7</td>
</tr>
<tr>
<td>Pegel Niedertrebra</td>
<td>894,3</td>
<td>1,63</td>
<td>1,76</td>
<td>5,89</td>
<td>11,8</td>
<td>41,0</td>
</tr>
<tr>
<td>IL11 Mühle Vent Mattstedt</td>
<td>780,5</td>
<td>1,26</td>
<td>1,39</td>
<td>5,17</td>
<td>10,6</td>
<td>39,0</td>
</tr>
<tr>
<td>Pegel Mellingen</td>
<td>627</td>
<td>0,75</td>
<td>0,88</td>
<td>4,21</td>
<td>9,07</td>
<td>36,2</td>
</tr>
<tr>
<td>Pegel Gräfinau-Angstedt</td>
<td>154,8</td>
<td>0,381</td>
<td>0,510</td>
<td>2,45</td>
<td>5,61</td>
<td>22,7</td>
</tr>
</tbody>
</table>

mit:
- \(A_{E} \) = Einzugsgebietsgröße
- MNQ = mittlerer niedrigster Abfluss
- \(Q_{30} \) = Abfluss an 30 Unterschreitungstagen
- MQ = mittlerer Abfluss
- \(Q_{330} \) = Abfluss an 330 Unterschreitungstagen
- MHQ = mittlerer höchster Abfluss

- Begehungsdatum und Uhrzeit
- Abfluss des nächsten Pegels zum Zeitpunkt der Begehung
- Hydrologische Kennwerte bezogen auf den bzw. die Pegel
- Beschreibung der vorhandenen Bauwerke und dazugehörige Anlagen anhand von Fotos
- Einschätzung der Durchgängigkeit (flussauf- und flussabwärts)
- Maßnahmenvorschläge zur Herstellung bzw. Verbesserung der Durchgängigkeit (flussauf- und flussabwärts).

Weiterhin wurden Bestandspläne der Standorte erstellt. Als Basis dienten:

- Topographische Karte TK 10
- Digitale Flurstückskarten
- Skizzen, die bei der Begehung erstellt wurden.
- Unterlagen von Bestandsplänen und Planungsunterlagen in verschiedenen Dateiformaten und Qualitäten

In die Bestandspläne wurden die vorgeschlagenen Maßnahmen bzw. Durchgängigkeitskonzepte eingezeichnet.
4 Maßnahmenvorschläge

4.1 Allgemeine Planungsgrundlagen und Vorgehensweise

Für die Standorte, die als nicht durchgängig bewertet wurden, war die Konzeption von Maßnahmen zur Herstellung der Durchgängigkeit erforderlich.

Die Bewertungskriterien für die Durchgängigkeit waren gleichzeitig auch die fachliche Grundlage für die Entscheidung über eine oder ggf. mehrere Maßnahmen am Standort und für die Bemessung der Bauwerke und Einrichtungen. Die Art der Maßnahme richtete sich nach den Standortgegebenheiten. Im Rahmen der Vorplanung wurden ggf. Varianten untersucht.

Als Aufwuchssareal des Aals in der Ilm wurde der gesamte Bereich der Barbenregion von der Mündung in die Saale bis Niederrossla (vgl. Abb. 4-1) betrachtet. Für den Lachs werden in der Ilm zwei mögliche Laichareale berücksichtigt, die durch die Stadt Weimar getrennt sind. Das erste Areal befindet sich von unterhalb Kromsdorf bis oberhalb Tiefurt, das zweite schließt sich dann unterhalb Weimar von Mellingen bis Buchfart an (vgl. Abb. 4-2).
Abb. 4-1: Festgelegter Lebensraum (Aufwuchsareal) des Aals in der Ilm nach Abstimmung mit der Thüringer Fischereiverwaltung

Abb. 4-2: Zu betrachtende Laichareale des Lachses in der Ilm (im Hintergrund Strukturgüte Ilm) nach Abstimmung mit Thüringer Fischereiverwaltung
4.2 Planungsgrundlagen für Fischaufstiegsanlagen

4.3 Planungsgrundlagen für Fischabstiegsanlagen

Eine Fischabstiegsanlage besteht aus der mechanischen Barriere, dem Fischschutzrechen, der das Eindringen der Fische in die Wasserkraftanlage verhindern soll, und geeigneten Abwanderkorridoren (Bypässen), durch die die Fische sicher ins Unterwasser geleitet werden. Zur Berücksichtigung aller Fischarten bzw. der gesamten Fischfauna ist je ein oberflächennaher und ein sohlennaher Bypass vorzusehen. Die Auffindbarkeit und die Passierbarkeit dieser Bypasseinrichtungen muss gewährleistet sein.

Bei der flussabwärts gerichteten Passage von Querbauwerken können Fische geschädigt werden. Abwanderwege sind nur bei bestimmten Kriterien notwendig, die in Kap. 5.3 erläutert werden.

Für die Standorte ohne Wasserkraftanlage wurden keine Abstiegskonzepte erstellt, da an der Ilm geringere Absturzhöhen als 3 m vorhanden sind. Bei diesen Fallhöhen kann die Passage der Querbauwerke als nicht schädigend eingestuft werden, wenn im Unterwassers ein ausreichendes Wasserpolster vorhanden ist.

4.4 Übersicht Maßnahmenvorschläge

4.4.1 Flussaufwärtsgerichtete Durchgängigkeit

Für die Ilm wurde für jeden Querbauwerksstandort mindestens ein Fischaufstiegskonzept erstellt. Grundsätzlich wurde zunächst geprüft, ob das Querbauwerk zurückgebaut werden kann, um die Durchgängigkeit optimal herzustellen und Stau- und Stau-strecken im Gewässer zu reduzieren. Für Fischaufstiegsanlagen wurden die bewährten Bauweisen Schlitzpass, gewässerbreites Raugerinne mit Beckenstrukturen und Umgehungsgerinne mit Beckenstruktur vorgesehen. Bei einigen Standorten, an denen diese Bauweisen nicht realisierbar waren, wurden andere Lösungen angeboten.

Im Rahmen der vorliegenden Studie wurden pro Standort teilweise mehrere Lösungen vorgeschlagen. Eine Variantendiskussion bleibt den nachfolgenden Planungsschritten vorbehalten. Für die Gesamtbewertung wurde je Standort eine Vorzugsvariante ausgewählt.

4.4.2 Flussabwärtsgerichtete Durchgängigkeit

Die Pläne der Maßnahmenkonzepte für die flussabwärts gerichtete Durchgängigkeit befinden sich in Anlage 5. Auf den Plänen befindet sich jeweils eine Tabelle mit den wichtigsten Parametern.

4.5 Kostengrobschätzung

Die Kosten der jeweiligen Maßnahmvorschläge wurden daher mit Hilfe eines vereinfachten empirischen Ansatzes überschlägig abgeschätzt (Kostengrobschätzung).

Eine Übersicht über die geschätzten Baukosten der Maßnahmvorschläge befindet sich in Anlage 7.

4.5.1 Flussaufwärtsgerichtete Durchgängigkeit

Erfahrungen und Berechnungen zu bisher ausgeführten und geplanten Fischaufstiegsanlagen zeigen, dass die Kosten für diese Anlagen eine starke Abhängigkeit von der zu überwindenden Höhendifferenz und dem vorgesehenen Durchfluss der Anlagen zeigen. Wegen der sehr unterschiedlichen baulichen Randbedingungen an den Standorten existiert jedoch eine beträchtliche Schwankungsbreite.

Daher wurden in LUWG (2008) die Kosten einer Vielzahl realisierter Fischaufstiegsanlagen analysiert und in Abb. 4-3 dargestellt. Mit Hilfe dieser Grafik können die spezifischen Baukosten je Meter Fallhöhe bezogen auf den Durchfluss der FAA abgeschätzt werden.

Dies kann dazu führen, dass an einzelnen Standorten in Unkenntnis z.B. spezieller Besonderheiten im Untergrund, die vorgenommene Kostenschätzung von der Realität abweicht. Das gewählte Verfahren ist daher nicht dazu geeignet belastbare Baukosten abzuschätzen. Es kann aber einen ersten Anhaltswert der zu erwartenden Größenordnung liefern.
Für die Kostengrobschätzung wurden die Kostenansätze mit ihren Schwankungsbreiten je nach Art der Baumaßnahme aus der Kostenfunktion aus Abb. 4-3 extrahiert und sind in Tab. 4-1 dargestellt. Die gewählte Maßnahme bestimmt also die Basiskosten. In der Regel zählt der Rückbau zu den kostengünstigsten Maßnahmen, während der Bau eines Vertikalschlitzpasses an einer Wasserkraftanlage oft die teuerste Variante darstellt.

Tab. 4-1: Kostenansätze für Fischaufstiegsanlagen

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Nettobaukosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückbau</td>
<td>10 - 35 € / (m * m³/s) * Q_{FAA} [m³/s] * h_f [m]</td>
</tr>
<tr>
<td>Teilrückbau bzw. Umbau / Verlängerung vorhandene Gleite bzw. Rückbau mit Sicherungsmaßnahmen</td>
<td>15 - 55 € / (m * m³/s) * Q_{FAA} [m³/s] * h_f [m]</td>
</tr>
<tr>
<td>Gewässerbreites Raugerinne mit Beckenstrukturen</td>
<td>200 - 300 € / (m * m³/s) * Q_{FAA} [m³/s] * h_f [m]</td>
</tr>
<tr>
<td>Umgehungsgerinne als Raugerinne-Beckenpass</td>
<td>100 – 500 € / (m * m³/s) * Q_{FAA} [m³/s] * h_f [m]</td>
</tr>
<tr>
<td>Vertikalschlitzpass</td>
<td>300 - 900 € / (m * m³/s) * Q_{FAA} [m³/s] * h_f [m]</td>
</tr>
</tbody>
</table>

Je nach den örtlichen Bedingungen (aufwändige Wasserhaltung, schwierige Untergrundverhältnisse, erheblicher Eingriff in die Bausubstanz, lange oder schwierige
Zwischen, enge Platzverhältnisse durch angrenzende Bebauung o.ä.), die bei der Ortsbegehung eingeschätzt wurden, erfolgte der untere, mittlere oder obere Kostenansatzwert für den jeweiligen Standort.

Die Kosten für den Bau einer Einschwimmernisperre an der Mündung des Unterwasserkanals wurden ebenfalls überschlägig abgeschätzt. Aus Erfahrungswerten resultieren folgende spezifische Kosten pro m³/s Ausbaudurchfluss der Wasserkraftanlage (Qₐ) (Quelle: LUWG; 2008):

\[10.000 \, € \, / \, (m³/s) \times Qₐ \, [m³/s] \]

Die Kostengrobschätzungen stellen Nettokosten, d. h. ohne Mehrwertsteuer, Nebenkosten, Planung und Grunderwerb, dar.

Die Ergebnisse der Kostengrobschätzungen für die Maßnahmen zur Herstellung der flussaufwärts gerichteten Durchgängigkeit der Standorte an der Ilm befinden sich in Anlage 7.

4.5.2 Flussabwärtsgerichtete Durchgängigkeit

Zur groben Abschätzung der Nettobaukosten von Maßnahmen zur Herstellung der abwärtsgerichteten Durchgängigkeit wurden vereinfacht die (Tab. 4-2) dargestellten, auf Erfahrungswerten (Quelle: LUWG; 2008) basierenden Kostenansätze pro m³/s Ausbaudurchfluss Qₐ verwendet.

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Nettobaukosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration in Neubau einer WKA</td>
<td>20.000 €/(m³/s) * Qₐ [m³/s]</td>
</tr>
<tr>
<td>Nachrüstung kleiner Anlagen Qₐ ≤ 20 m³/s</td>
<td>30.000 €/(m³/s) * Qₐ [m³/s]</td>
</tr>
<tr>
<td>ohne aufwändige Wasserhaltung</td>
<td></td>
</tr>
<tr>
<td>Nachrüstung kleiner Anlagen Qₐ > 20 m³/s</td>
<td>50.000 €/(m³/s) * Qₐ [m³/s]</td>
</tr>
<tr>
<td>mit aufwändiger Wasserhaltung</td>
<td></td>
</tr>
<tr>
<td>Nachrüstung großer Anlagen Qₐ > 20 m³/s</td>
<td>50.000 €/(m³/s) * Qₐ [m³/s]</td>
</tr>
</tbody>
</table>
Für alle Flusskraftwerke wurde eine aufwändige Wasserhaltung während der Bautätigkeit angenommen. Für Standorte mit Ausleitungskanal wurde angesetzt, dass der Ausleitungskanal ohne größeren Aufwand trocken gelegt werden kann.

Die Ergebnisse der Kostengrobschätzungen für die Maßnahmen zur Herstellung der flussabwärts gerichteten Durchgängigkeit der Standorte mit Wasserkraftnutzung an der Ilm befinden sich in Anlage 7.

4.6 Ökologische Abflüsse

Die ökologischen Abflüsse, die einer Wasserkraftanlage nicht zur Erzeugung von Energie zur Verfügung stehen, bestehen aus

- Mindestabfluss in Ausleitungsstrecken
- Durchflüsse von Fischaufstiegs- und Fischabstiegsanlagen (dieser Abflussanteil kann am Querbauwerk ggf. teilweise oder ganz zur Abdeckung des erforderlichen Mindestabfluss verwendet werden).

4.6.1 Mindestabfluss in Ausleitungsstrecken

Da im Rahmen dieser Studie der erforderliche Mindestabfluss für alle Standorte mit Ausleitungskraftwerken nicht nach dem Verfahren nach LAWA 2001 ermittelt werden konnte, wurde ausgehend von den Bedingungen an der Ilm eine überschlägige Abschätzung nach folgenden Ansätzen vorgenommen:

\[
Q_{min} = 0,33 \times MNQ \quad \text{für die Barben- und Äschenregion}
\]

\[
Q_{min} = 0,50 \times MNQ \quad \text{für die Untere und die Obere Forellenregion}
\]

In Anlage 8 ist eine tabellarische Übersicht der überschlägigen Mindestwasserer-
mittlung und der behördlichen Vorgaben in den wasserrechtlichen Unterlagen – falls
vorhanden – dargestellt.

4.6.2

Betriebsdurchfluss von Fischaufstiegsanlagen

Der Betriebsdurchfluss einer Fischaufstiegsanlage richtet sich nach

• dem erforderlichen Abfluss für die Auffindbarkeit der Fischaufstiegsanlage und
• deren hydraulischer und geometrischer Dimensionierung. Daraus ergibt sich bei
 Anwendung der Mindestanforderungen ein typischer Abfluss nach TLUG (2009).

Wenn der typische Abfluss für die Auffindbarkeit ausreichend ist, ist die Dimensio-
nierung der Fischaufstiegsanlage richtig. Ist der Abfluss kleiner als der erforderliche
Abfluss für die Auffindbarkeit, muss die Fischaufstiegsanlage neu dimensioniert
werden. In dieser Weise erfolgt die Dimensionierung der ausgewählten Bauwiesen
für die jeweilige Fließgewässerzone.

Im Rahmen der Studie wurden die Fischaufstiegsanlagen in Abhängigkeit von der
Fließgewässerzone bemessen und kategorisiert. Es ergab sich damit eine differen-
zierte Gestaltung gegenüber TLUG (2009). Sie werden nachfolgend als Muster-
Schlitzpass und Muster-Raugerinne-Pass bezeichnet. Die Betriebsdurchflüsse des
Muster-Raugerinne-Passes stellen die kleinsten Werte dar, die mit dieser Bauweise
realisiert werden können. Wo immer möglich sollte jedoch eine großzügigere Dimen-
sionierung erfolgen, wenn die örtlichen Verhältnisse es zulassen. Bei gewässer-
breiten Raugerinnen sollte vor allem das Prinzip der geteilten Rampe genutzt wer-
den, das in Thüringen bereits mehrfach erfolgreich eingesetzt wurde.
Abb. 4-4: Beispiel für Ausführung einer geteilten Rampe (Hasel, Thüringen). In Fließrichtung links befindet sich die Beckenstruktur auf der Hälfte der Gewässerbreite. Die Fließtiefe ist auch bei kleinen Abflüssen ≥ 60 cm. Die Schlitzweiten zwischen den Riegelsteinen sollten > 60 cm sein, um Verklausungen zu verhindern.

Die Bemessungswerte müssen im Rahmen der Vor- und Entwurfsplanung eines Standorts überprüft und nach einer genauen Vermessung auf die örtlichen Gegebenheiten angepasst werden, jedoch mindestens den geometrischen und hydraulischen Anforderungen nach TLUG (2009) entsprechen. Tab. 4-3 zeigt die Übersicht der pauschalierten Betriebsabflüsse.

<table>
<thead>
<tr>
<th>Bauweise FAA</th>
<th>Barbenregion und Lachsareale $Q_{\text{FAA, min}}$ [l/s]</th>
<th>Äschenregion $Q_{\text{FAA, min}}$ [l/s]</th>
<th>Forellenregion $Q_{\text{FAA, min}}$ [l/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical-Slot-Pass</td>
<td>280</td>
<td>190</td>
<td>130</td>
</tr>
<tr>
<td>Raugerinne-Beckenpass (Beckenstruktur bei geteilten Ramen, Umgehungsgerinne mit Beckenstruktur)</td>
<td>500</td>
<td>350</td>
<td>200</td>
</tr>
</tbody>
</table>
4.6.3
Betriebsdurchfluss von Fischabstiegsanlagen

Der Durchfluss der sohlen- und oberflächennahen Bypässe als Fischabstieg muss jeweils mindestens ca. 1 bis 2 % des Turbinendurchflusses betragen (TLUG 2009). Da in der Ilm nur Kleinwasserkraftanlagen existieren, die einen maximalen Ausbau- durchfluss von 6,5 m³/s aufweisen, wären Durchflüsse von 65 bis 130 l/s je Bypass bereitzustellen. Um die geometrischen Mindestabmessungen nach TLUG (2009) (siehe Tabelle 4-4) eines funktionstüchtigen Bypasses einzuhalten, (vgl. das untenstehende Berechnungsbeispiel) ergeben sich für die Standorte bis Mellingen (Laichareale Lachs und Lebensraum Aal) 125 l/s je Bypass, für die Standorte oberhalb Mellingen (ab IL27) 50 l/s und für die Standorte in der Forellenregion 25 l/s je Bypass. Damit kann bei den betroffenen Standorten der erforderliche Bypass-Abfluss sichergestellt werden. Die in Tab. 4-4 aufgezeigten Werte wurden daher zur Vorbe messung innerhalb der Studie festgelegt.

Berechnungsbeispiel für den Durchfluss von Bypässen

An einem Wasserkraftstandort in der Barbenregion soll ein oberflächennaher Bypass als Einschnitt in einem vorhandenen Leerschuss errichtet werden. Die Mindestabmessungen der Bypassöffnung entsprechen der minimalen Schlitzweite und minimalen Schlitztiefe für die relevanten Fischarten (Barbe, Lachs). Es ergibt sich eine Mindestbreite von $B = 0.30$ m und eine Mindesttiefe von $H = 0.40$ m. Damit ergibt sich bei einem angenommen Überfallbeiwert von 0,6 und einem Rückstaubeiwert von 0,95 ein Durchfluss von etwa 128 l/s.

<table>
<thead>
<tr>
<th>Barbenregion und Äschenregion (Laichareale Lachs)</th>
<th>Äschenregion, ohne Lachs (oberhalb IL27)</th>
<th>Forellenregion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erforderliche Abmessungen in Anlehnung an Schlitzöffnungen für FAA nach TLUG (2009)</td>
<td>$H = 0.4$</td>
<td>$H = 0.3$</td>
</tr>
<tr>
<td></td>
<td>$B = 0.3$</td>
<td>$B = 0.17$</td>
</tr>
<tr>
<td>Abfluss für Oberflächennahen Bypass ($Q_{FAB,min}$)</td>
<td>125 l/s</td>
<td>50 l/s</td>
</tr>
<tr>
<td>Abfluss für sohlennahen Bypass ($Q_{FAB,min}$)</td>
<td>125 l/s</td>
<td>50 l/s</td>
</tr>
</tbody>
</table>

In der Detailplanung eines jeden Standorts muss geprüft werden, ob die Mindestabmessungen bei dem hier vorgeschlagenen Durchfluss eingehalten werden können. Je nach konstruktiver Gestaltung können sich gegebenenfalls größere Durchflüsse je Bypass ergeben.
4.7
Auswirkungen auf die Wirtschaftlichkeit

4.7.1
Allgemeines

Die in den Kapiteln 4.1 – 4.6 beschriebenen Maßnahmen zur Herstellung bzw. Verbesserung der Durchgängigkeit erfordern Investitionen und können die Betriebskosten von Wasserkraftanlage erhöhen.

Die ökologischen Abflüsse entsprechend Kap. 4.6 können energetisch nicht genutzt werden und bedingen Erzeugungsverluste. Diese konnten im Rahmen der vorliegenden Studie nicht genau ermittelt werden. Daher wurde ein vereinfachtes Verfahren zur Abschätzung der Mindererzeugung für jeden Standort angewandt, das nachfolgend erläutert wird.

Die Ergebnisse der Wirtschaftlichkeitsbetrachtung befinden sich in Anlage 8.

Im Laufe der Bearbeitung des Durchgängigkeitskonzepts Ilm ist das EEG 2012 verabschiedet worden, dass am 01.01.2012 in Kraft treten wird. Als wesentliche Änderung wird der Tarif für Wasserkraftanlagen einheitlich auf 12,7 ct/kWh bis zu einer Nennleistung der Wasserkraftanlage von 500 kW festgesetzt. Die Vergütung ist jedoch nicht nur an ökologische, sondern zusätzlich an technische Modernisierungsmaßnahmen gekoppelt.

Im vorliegenden Bericht wurden die Neuerungen des EEG 2012 nicht berücksichtigt. Für erneute Untersuchungen sollten die Vergütungen an die neuen Tarife angepasst werden.
4.7.2
Verfahrensbeschreibung

Eine Abschätzung über die mögliche Leistung einer WKA liefert die Formel:

\[P = 7 \times Q_a \times h_a \]

Hierin bedeuten:

- \(Q_a \): Ausbaudurchfluss in m³/s
- \(h_a \): Ausbaufallhöhe in m
- \(P \): Leistung in kW
- 7: Faktor zur Berücksichtigung der Maschinenwirkungsgrade und der Einheitenumrechnung. Der Faktor 7 entspricht etwa einem Gesamtwirkungsgrad von 71,4 % unter Berücksichtigung von Rechen- und Auslaufverlusten etc. und ist für bestehende Anlagen ein typischer Wert.

Für den Ausbaudurchfluss und die Fallhöhe wurden die aus Unterlagen bzw. den Besichtigungen ermittelten Werte angesetzt. Der Ausbaudurchfluss wurde um den ökologischen Abfluss entsprechend Kap. 4.6 reduziert.

Der ökologische Mindestabfluss setzt sich aus geforderten Durchflüssen für Fischaufstiege, Fischabstiege und ggf. dem Mindestabfluss für die Ausleitungsstrecke zusammen.

Die am Standort zu erzielende Jahresarbeit wurde unter Ansatz von Jahresvolllaststunden zu:

\[E_a \, (\text{kWh}) = \text{Volllaststunden} \times (\text{h}) \times P \, (\text{kW}) \]

überschlägig bestimmt. Die angenommenen Volllaststunden richten sich nach der Lage des betrachteten Standorts und wurden für diese Untersuchung von 5000 über 4500 bis zu 4000 Volllaststunden pro Jahr von der Mündung bis zum Oberlauf gestaffelt, um die zur Quelle hin abnehmende Gleichförmigkeit des Abflusses zu berücksichtigen.

Der Jahresertrag der Anlage ergibt sich dann aus der Multiplikation der Jahresarbeit mit der Einspeisevergütung nach EEG.

4.7.3
Reduzierung der Betriebszeit durch Turbinenmanagement

Da im Bereich der Ilm ein erhöhter Fischschutz durch Einbau eines Feinrechens mit 10 mm lichtem Stababstand vorgesehen ist, erübrigen sich alternative Fischschutz-
konzepte, wie z.B. das zeitweise Abschalten der Turbine in Hauptwanderzeiten (Turbinenmanagement).

4.7.4 Reduzierung der Nutzfallhöhe durch erhöhte Verluste an Fischschutzrechen

An der Ilm werden 10 mm-Rechen gefordert. Diese bedingen hydraulische Verluste und damit eine Reduzierung der Nutzfallhöhe und der erzeugten Energie. Für die Wasserkraftanlagen an der Ilm wurde pauschal eine Minderung der Nutzfallhöhe um 0,05 m angesetzt.

4.7.5 Erhöhte Betriebskosten für die Reinigung von Fischschutzrechen und Abstiegsanlagen

Zur Berücksichtigung der zusätzlichen Betriebskosten nach Installation der Fischschutzseinrichtungen wird ein Pauschalabzug von 2 % des Jahresertrags vorgenommen.
4.7.6
Fazit

Eine höhere Jahresvergütung kann als zusätzlicher Gewinnanreiz für die Durchführung der vorgeschlagenen Maßnahmen genutzt werden.

Ob und in welchem Umfang dies möglich ist, hängt stark von den Gegebenheiten am Standort ab und kann nur auf Basis einer detaillierten Planung beurteilt werden.
5 Bewertung des ökologischen Zustands hinsichtlich Durchgängigkeit und Lebensraumverlust

5.1 Grundlagen

Für das Bewertungssystem wurden die Qualitätskomponenten der EU-WRRL (Anhang V) „Fische“ und „benthische Wirbellose Fauna“ als fachliche Basis ausgewählt:

- Als obligat aquatische Organismen unterliegen Fische und viele Makrozoobenthos-Organismen unmittelbar den Lebensbedingungen im aquatischen Milieu und damit den direkt auf die Fließgewässer einwirkenden anthropogenen Einflüssen.

- Anhand historischer Quellen sowie auf der Grundlage der biologischen Fließgewässerzonierung lassen sich die typischen Artengemeinschaften der beiden Organismengruppen vergleichswis e zuverlässig beschreiben.

- Über die stromaufwärts gerichteten Migrationen der Fischfauna liegen artspezifisch differenzierte Erkenntnisse vor. So lassen sich Aspekte zur linearen Durchgängigkeit, d.h. zur Kontinuität der Flüsse bzw. deren Unterbrechung durch Querbauwerke sowie die Anforderungen von Rundmäulern und Fischen an Aufstiegsanlagen präzise beantworten. Ergänzung findet dies durch Erkenntnisse über die Gegenstromwanderungen aquatischer Wirbelloser, die Hinweise für die Gestaltung von Fischaufstiegsanlagen geben (DWA 2010).
• Verschiebungen dieser Lebensgemeinschaften hinsichtlich der Zusammensetzung z. B. von Ernährungs- und/oder Strömungstypen belegen die Einflüsse von Aufstau und Ausleitung.

• Schädigungen bei der flussabwärts gerichteten Passage von Stauanlagen und Wasserkraftwerken sowie an sonstigen Wassernutzungsanlagen ohne ausreichende Schutzmaßnahmen treten bei Fischen in beträchtlichem Ausmaß auf und sind durch zahlreiche Untersuchungen dokumentiert (u. a. ATV-DVWK 2004).

Als Grundlage für das Bewertungssystem wurde die Fließgewässerzonierung gewählt, die das von anthropogenen Einflüssen weitgehend unbeeinträchtigte Artenspektrum definiert.

Alle Standorte wurden hinsichtlich ihres Einflusses auf die lineare Durchgängigkeit sowohl für auf- als auch abwandernde Organismen bewertet. Dies schließt die Beurteilung der Wirksamkeit von Fischauf- sowie Fischschutz- und Fischabstiegsanlagen ein.

Für beide beschriebenen Zustände wurde außerdem die kumulative Wirkung der Querbauwerke für den Auf- und Abstieg ermittelt. Ergebnis sind die Erreichbarkeitsraten der Laich- bzw. Aufwuchssareale (aufwärts) und die Erreichbarkeit der Saale (abwärts) durch abwandernde Fische (kumulierte Abstiegsrate) sowie die Gesamtüberlebensrate der Aale bis zur Mündung der Ilm.
Die Bewertung erfolgte mit Hilfe einer fünfstufigen Skala, die in Anlehnung an die Darstellung der EU-WRRL farbig unterlegt ist. Im weiteren Verfahren gehen die Parameter unterschiedlich ein:

Tab. 5-1: Einstufung von Auffindbarkeit, Passierbarkeit und Durchgängigkeit

<table>
<thead>
<tr>
<th>Bezeichnung Einstufung</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Beeinträchtigung</td>
<td>gut</td>
<td>eingeschränkt</td>
<td>gravierend eingeschränkt</td>
<td>ungenügend</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5-2: Einstufung des Schädigungsgrades

<table>
<thead>
<tr>
<th>Bezeichnung Einstufung</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Beeinträchtigung</td>
<td>gering</td>
<td>mäßig</td>
<td>erheblich</td>
<td>hoch</td>
<td></td>
</tr>
</tbody>
</table>

Die Verfahren zur Bewertung der Durchgängigkeit und zur Ermittlung des Lebensraumverlustes werden im Folgenden erläutert.
5.2

Flussaufwärts gerichtete Durchgängigkeit

Die Einschätzung der aktuellen, flussaufwärts gerichteten Durchgängigkeit berückblickt folgende Kriterien:

- Großräumige Auffindbarkeit potenzieller Wanderwege (über Wehr oder WKA, s.o.)
- Kleinräumige Auffindbarkeit potenzieller Wanderwege (in der Regel Fischaufstiegsanlagen)
- Passierbarkeit von Wanderhindernissen wie Wehr, WKA und Fischaufstiegsanlagen (FAA)

Die Durchgängigkeit ist grundsätzlich für die potenziell natürliche Fischfauna des jeweiligen Gewässerabschnitts zu gewährleisten.

Die flussaufwärts gerichtete Wanderung ist nur dann sichergestellt, wenn mindestens ein Wanderweg existiert, der nach den in den maßgeblichen Tabellen formulierten Grundsätzen sowohl gut auffindbar als auch gut passierbar ist.

5.2.1

Großräumige Auffindbarkeit

- Unter großräumiger Auffindbarkeit wird verstanden, in welchem Maß ein Wanderweg zur Passage des Standortes aufgefunden werden kann. Dieser kann über das Querbauwerk, die WKA oder eine Umflut führen und besteht grundsätzlich aus dem passierbaren Bauwerk (Fischaufstiegsanlage oder Querbauwerk) und den Gewässerstrecken ober- und unterhalb des Bauwerks wie Abb. 5-2 zeigt.
Abb. 5-2: Querbauwerk mit Ausleitungskraftwerk und mögliche Maßnahmen zur Herstellung der Durchgängigkeit

In Abb. 5-2 ist ein Standort mit Ausleitungskraftwerk dargestellt. Bei der Ermittlung der Rate der großräumigen Auffindbarkeit $q_{\text{Affb,gr}}$ wird davon ausgegangen, dass ein Standort, an dem Wasser zu Kühlzwecken oder zur Versorgung von Fischteichen entnommen wird, genau so zu betrachten ist, wie ein Standort mit einem Ausleitungskraftwerk.

Die Auffindbarkeit des Wanderweges zum Querbauwerk hängt von der Abflussaufteilung am Zusammenfluss von UW-Kanal und Mutterbett und somit vom Ausbauabfluss des Kraftwerks ab. Da die prozentuale Abflussaufteilung natürlichen Schwankungen im Jahresverlauf unterworfen ist, wird hier als Bezugsgröße vom Mittelwasserabfluss ausgegangen. Als Arbeitsannahme wird eine Auffindbarkeitsrate für den Wanderweg Querbauwerk in Abhängigkeit vom Ausbaugrad der WKA (als Verhältnis Ausbauabfluss Q_a bzw. Entnahmewassermenge $Q_{\text{Entnahme}} / \text{Mittelwasserabfluss} M_Q$) bzw. der Entnahmemenge entsprechend Abb. 5-3 angesetzt.

Es wird dabei unterstellt, dass das Mutterbett durchwandert werden kann, d.h. der Abfluss in der Ausleitungsstrecke ist für Erreichbarkeit einer Fischaufstiegsanlage ausreichend.

Der Anteil der Fische, der den Weg über die Ausleitungsstrecke zum Querbauwerk wählt und nicht in den UW-Kanal wandert, beträgt $q_{\text{Affb,gr}}(\text{QBW})$. Der Anteil der Fische, der den Weg über die Ausleitungsstrecke zum Querbauwerk wählt und nicht in den UW-Kanal wandert, beträgt $q_{\text{Affb,gr}}(\text{WKA})$.

Es gilt $q_{\text{Affb,gr}}(\text{WKA}) = [1 - q_{\text{Affb,gr}}(\text{QBW})]$.

$q_{\text{Affb,gr}}(\text{QBW})$
Abb. 5-3: Arbeitsannahme für die Auffindbarkeitsrate $q_{Affb,gr}$, falls keine oder eine unwirksame Einschwimbarriere am UW-Kanal vorhanden ist; Q_A = Ausbaudurchfluss der WKA bzw. Entnahmemenge, MQ = Mittelwasser.

Als Arbeitsannahme nach Abb. 5-3 gilt:

- Bei einem Verhältnis der Entnahmemenge zum mittleren Abfluss von $Q_{Entnahme}/MQ > 0,9$ werden im Jahresmittel 90 % aller abwandernden Fische zur Entnahme geleitet. Die Auffindbarkeitsrate des Querbauwerks $q_{Affb,gr}$ ist 0,1.

- Bei $Q_{Entnahme}/MQ < 0,1$ wandern alle Fische über das Querbauwerk ab. Die Auffindbarkeitsrate des Querbauwerks $q_{Affb,gr}$ ist 1.

- Bei $0,1 < Q_{Entnahme}/MQ < 0,9$ wird eine lineare Aufteilung der Auffindbarkeitsraten von Querbauwerk und Entnahme angesetzt.

Ist eine wirksame Einwanderbarriere am Auslauf des Mühlgrabens vorhanden, so wird davon ausgegangen, dass diese die großräumige Auffindbarkeit in dem Maße beeinflusst, dass dieser Wanderweg eine Auffindbarkeitsrate von 0,1 erhält. Somit verbleiben 90 % in der Ausleitungstrecke, ungeachtet der Abflussverteilung. Eine 100 %ige Wirkung wird ausgeschlossen, da vor allem bei hohen Abflüssen die Funktion einer Einwanderbarriere eingeschränkt ist. Dieser Einschätzung liegen keine wissenschaftlichen Untersuchungen zugrunde. Es sind auf Erfahrungen und Arbeitshypothesen basierende fachliche Einschätzungen, die ggf. bei fortgeschrittenem empirisch-wissenschaftlichen Kenntnisstand angepasst werden müssen.

Bei Standorten mit Brauchwasserentnahme, z.B. zu Kühlungszwecken oder für die Speisung von Fischteichen, wird angenommen, dass die Entnehmerrückspeisung dermaßen blockiert ist, so dass eine Einwanderung unmöglich ist. In dem Fall werden alle Fische in Richtung Querbauwerk wandern, die Auffindbarkeitsrate wird mit 1 angesetzt.
Ist am Standort keine Ausleitung vorhanden, d.h. es gibt nur einen Wanderweg, das Flussbett, oder handelt es sich um ein Flusskraftwerk, so ist die Rate der großräumen Auffindbarkeit gleich 1, d.h. alle aufwanderwilligen Fische und Kleintiere finden zwangsläufig den Weg zum Querbauwerk.

Existieren mehrere genutzte WKA an einem Kanal, erfolgt die Berechnung wie bei einer WKA, da nur das Verhältnis Q_a/MQ, also der Ausbaugrad, die Auffindbarkeit von Querbauwerk oder WKA bestimmen.

5.2.2 Kleinräumige Auffindbarkeit

Die kleinräumige Auffindbarkeit resultiert aus der Lage des Einstiegs einer Fischaufstiegsanlage zum Wanderhindernis und der Ausbildung der Leitströmung in Relation zu dem konkurrierenden Abfluss.

Die kleinräumige Auffindbarkeit der Wanderwege bzw. Fischaufstiegsanlagen wird nicht artspezifisch ermittelt, sondern für alle zu betrachtenden Arten, die sich rheotaktisch verhalten, als gleich angenommen.

Die Bewertung erfolgt gemäß Tab. 5-3.
Tab. 5-3: Bewertung der Kleinräumigen Auffindbarkeit eines Wanderwegs

<table>
<thead>
<tr>
<th>Auffindbarkeitsrate $q_{arb,kl}$</th>
<th>Fischökologische Definition</th>
<th>Einzelkriterien für kleinräumige Auffindbarkeit eines Wanderwegs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unbeeinträchtigte Auffindbarkeit</td>
<td>Es ist kein Querbauwerk vorhanden ODER das Querbauwerk ist ein gewässerbreites Raugerinne.</td>
</tr>
<tr>
<td>0,85</td>
<td>Die Auffindbarkeit der Fischaufstiegsanlage ist mäßig beeinträchtigt oder nur an mindestens 240 Tagen sichergestellt</td>
<td>Kleinräumige Auffindbarkeit ist mäßig beeinträchtigt, wenn: Fischaufstiegsanlage am Querbauwerk, deren Positionierung und Leitströmung geringfügig von Anforderungen nach TLUG (2009), Anhang A.5 abweicht. Fischaufstiegsanlage uferseitig neben dem Wasserkraftwerk; Positionierung und Leitströmung weichen mäßig vom Stand der Technik (Anhang A.4) ab.</td>
</tr>
<tr>
<td>0,60</td>
<td>Durch falsche Positionierung ist die Auffindbarkeit der Fischaufstiegsanlage erheblich beeinträchtigt.</td>
<td>Kleinräumige Auffindbarkeit ist erheblich beeinträchtigt, wenn: Fischaufstiegsanlage am Querbauwerk. Einstieg weit unterhalb, keine wahrnehmbare Leitströmung. Fischaufstiegsanlage am Ufer, das dem Kraftwerk gegenüberliegt. Positionierung entspricht ansonsten den Kriterien in Stufe B.</td>
</tr>
<tr>
<td>0</td>
<td>Fischaufstiegsanlage ist nicht auffindbar.</td>
<td>Kleinräumige Auffindbarkeit ist nicht gegeben wenn: Aufstiegsanlage nicht sicher auffindbar ist, da vollkommen falsch positioniert. ODER Es existiert keine Fischaufstiegsanlage</td>
</tr>
</tbody>
</table>

Gibt es an der WKA keine FAA, wird die kleinräumige Auffindbarkeit nach Tab. 5-3 mit einer Auffindbarkeitsrate $q_{arb,kl}$ von 0 bewertet.
5.2.3 Passierbarkeit

Die aufwärts gerichtete Passierbarkeit zeigt an, in welchem Maße die Möglichkeit für Fische und Kleintiere besteht, den Aufstieg in einer angemessenen Zeitspanne bewältigen zu können. Die Ermittlung der Passierbarkeitsrate q_{Pass} eines Wanderwegs wird unterschieden in die Fälle:

- Passierbarkeit des Querbauwerks (ohne Fischaufstiegsanlage),
- Passierbarkeit der vorhandenen Fischaufstiegsanlage,

Je nach dem, ob eine Fischaufstiegsanlage an dem jeweiligen Wanderweg vorhanden ist oder nicht, wird entweder diese oder das Querbauwerk hinsichtlich seiner Passierbarkeit bewertet. Auch hier gibt es die Einteilung in 5 verschiedene Stufen, denen Passierbarkeitsraten q_{Pass} zugeordnet sind (s. Tab. 5-4 und Tab. 5-5). Die Bewertungskriterien entsprechen den Anforderungen nach TLUG (2009) die der fischökologischen Definition zugeordnet sind.

Die Passierbarkeit von Wehren und Fischaufstiegsanlagen wurde für die Arten der autochthonen Fischfauna bewertet. Die Bewertung der Passierbarkeit eines Querbauwerks erfolgt gemäß Tab. 5-4.

Tab. 5-4: Bewertung der flussaufwärts gerichteten Passierbarkeit eines Querbauwerks ohne gesonderte Fischaufstiegsanlage

<table>
<thead>
<tr>
<th>Passierbarkeitsrate q_{Pass}</th>
<th>Fischökologische Definition</th>
<th>Einzelkriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unbeeinträchtigte Aufwanderung</td>
<td>Es ist kein Querbauwerk vorhanden</td>
</tr>
<tr>
<td>0,975</td>
<td>Passierbarkeit des Standortes ist nur geringfügig beeinträchtigt und an mindestens 300 Tagen/Jahr gegeben.</td>
<td>Das Querbauwerk ist flach geneigt, mit rauer Oberfläche und ausreichender Wassertiefe im Wanderkorridor, so dass es ebenso leicht passierbar ist wie eine natürliche Rausche.</td>
</tr>
<tr>
<td>0,85</td>
<td>Passierbarkeit des Standortes ist an mindestens 240 Tagen und/oder für einzelne Arten und/oder Größen nur eingeschränkt gegeben.</td>
<td>Am Querbauwerk weichen die hydraulischen Bedingungen auch bei höherem Rückstau nur mäßig von den Grenzwerten nach Tab. 3 (TLUG (2009), Anhang A) ab.</td>
</tr>
<tr>
<td>0,60</td>
<td>Der Standort ist nur von erheblich eingeschränktem Arten- und Größenspektrum überwindbar.</td>
<td>Das Querbauwerk ist so steil und hoch, dass auch bei höherem Rückstau die hydraulischen Grenzwerte nach Tab. 3 (TLUG (2009), Anhang A) erheblich abweichen.</td>
</tr>
<tr>
<td>0</td>
<td>Der Standort ist auch bei Hochwasser nicht passierbar.</td>
<td>Das Querbauwerk wird bei Hochwasser nicht überstaut und die hydraulischen Grenzwerte nach Tab. 3 (TLUG (2009), Anhang A) weichen gravierend ab.</td>
</tr>
</tbody>
</table>

Die Bewertung erfolgt gemäß Tab. 5-5.

Tab. 5-5: Bewertung der flussaufwärts gerichteten Passierbarkeit eines Querbauwerks mit Fischaufstiegsanlage

<table>
<thead>
<tr>
<th>qPass *</th>
<th>Fischökologische Definition</th>
<th>Einzelkriterien Querbauwerk mit Fischaufstiegsanlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unbeeinträchtigte Aufwanderung</td>
<td>Es ist kein Querbauwerk vorhanden</td>
</tr>
<tr>
<td>0,975</td>
<td>Passierbarkeit des Standortes ist nur geringfügig beeinträchtigt und an mindestens 300 Tagen/Jahr gegeben.</td>
<td>Aufstiegsanlage entspricht dem Stand der Technik (vgl. Tab. 3 und 4 in den TLUG (2009), Anhang A) sowohl für die größten als auch die leistungsschwächsten Arten und Entwicklungsstadien.</td>
</tr>
<tr>
<td>0,85</td>
<td>Passierbarkeit des Standortes ist an mindestens 240 Tagen UND/ ODER für einzelne Arten UND/ ODER Größen nur eingeschränkt gegeben.</td>
<td>Mäßige Abweichungen von den Grenzwerten nach Tab. 3 und 4 (TLUG (2009), Anhang A) bezüglich Strömungsgeschwindigkeit, Energieeintrag, Dimensionen etc..</td>
</tr>
<tr>
<td>0,60</td>
<td>Der Standort ist nur von erheblich eingeschränktem Arten- und Größenspektrum überwindbar.</td>
<td>Erhebliche Abweichungen von den Grenzwerten nach Tab. 3 und 4 (TLUG (2009), Anhang A).</td>
</tr>
<tr>
<td>0</td>
<td>Der Standort ist auch bei Hochwasser nicht passierbar.</td>
<td>Gravierende Abweichungen von den Grenzwerten nach Tab. 3 und 4 (TLUG (2009), Anhang A).</td>
</tr>
</tbody>
</table>

* Den in Tab. 5-3, Tab. 5-4 und Tab. 5-5 dargestellten Raten und Abstufungen liegen keine wissenschaftlichen Untersuchungen zugrunde. Es sind auf Erfahrungen und Arbeitshypotesen basierende fachliche Einschätzungen, die ggf. bei fortgeschrittenem empirisch-wissenschaftlichen Kenntnisstand angepasst werden müssen.

5.2.4 Gesamtabschätzung Durchgängigkeit aufwärts am Standort

Die Methode zur Gesamtbewertung eines Standortes berücksichtigt sowohl die Situation an Flusskraftwerken als auch an Ausleitungskraftwerken und möglichen weiteren Gewässerverzweigungen.
Abb. 5-4: Parameter-Bewertung der Durchgängigkeit eines Standortes mit Wanderwegen in der Ausleitungsstrecke und im Betriebskanal

Jeder einzelne Wanderweg wird bezüglich der groß- und kleinräumigen Auffindbarkeit sowie der Passierbarkeit bewertet. Zur Bewertung jedes Wanderwegs werden die Raten der einzelnen Parameter für die flussaufwärts gerichtete Durchgängigkeit multipliziert.

Die Gesamtbewertung der aufwärts gerichteten Durchgängigkeit eines Standorts ergibt sich aus der Addition der Bewertungen der einzelnen Wanderwege wie in der nachfolgenden Tab. 5-6 zusammen gestellt.
Tab. 5-6: Beispiel für die Gesamtbewertung der flussaufwärts gerichteten Durchgängigkeit eines Standortes

<table>
<thead>
<tr>
<th>Fall</th>
<th>Wanderweg</th>
<th>Großräumige Auffindbarkeit des Wanderweges</th>
<th>Kleinräumige Auffindbarkeit des Einstiegs der FAA</th>
<th>Passierbarkeit von FAA oder QBW</th>
<th>Bewertung für Wanderweg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Betriebskanal, FAA an WKA</td>
<td>0,85</td>
<td>0,975</td>
<td>0,85</td>
<td>0,70</td>
</tr>
<tr>
<td>2</td>
<td>Mutterbett = Ausleitungsstrecke</td>
<td>0,15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ggf. weitere Wanderwege (z.B. Gewässerarme)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bewertung jedes Wanderweges durch Multiplikation der Raten der Einzelkriterien

Gesamtbewertung der flussaufwärts gerichteten Durchgängigkeit eines Standorts durch Addition der Bewertungen aller Wanderwege = Aufstiegsrate des Standorts q_{Auf,Standort} = 0,70
5.2.5
Erreichbarkeitsrate der Areale

5.3
Flussabwärts gerichtete Durchgängigkeit

Die Abwanderung von Fischen an einem Standort ist dann gewährleistet, wenn ein funktionsfähiger Abwanderweg zur Verfügung steht und wenn abwandernde Fische nicht in einer Wassernutzungsanlage geschädigt werden. Daher werden an einem Standort mit Wasserentnahme bzw. -nutzung vier Faktoren untersucht:

- Anteil des ausgeleiteten Wassers im Verhältnis zum Gesamtabfluss des Gewässers im Sinn der großräumigen Auffindbarkeit von Abwanderhindernissen
- Mit welcher Wahrscheinlichkeit gelangen abwandernde Fische in Betriebskanäle bzw. an Wassernutzungsanlagen oder wandern sie eher über das Querbauwerk ab?
- Schutzwirkung von mechanischen Barrieren und kleinräumige Auffindbarkeit potenzieller Wanderwege (in der Regel Bypässe oder Aalrohre)
- Vorhandensein einer Abwanderleitung
- Können Fische, die nicht über das Querbauwerk abwandern, einen Wanderweg zum Unterwasser finden und schadlos nutzen?
- Schädigungsgrad bei der Passage des Querbauwerks
- Wie hoch ist das Verletzungsrisiko bei der Passage des Wehrrückens und beim Aufprall im Unterwasser?
- Schädigungsgrad durch ein Wasserkraftwerk oder ein Wasserentnahmebauwerk

Fischaufstiegsanlagen sind bezüglich ihrer Auffindbarkeit für den Abstieg nicht optimal. Ihre Auffindbarkeit ist insbesondere bei den geringen Dotationen im Vergleich...
zu den konkurrierenden Strömungen nicht gegeben. Sie werden bei der Bewertung nicht als Wanderwege für den Abstieg berücksichtigt.

Im Einzelnen werden folgende Parameter bewertet:

5.3.1 Große Auffindbarkeit

An Standorten ohne WKA erfolgt der Abstieg entsprechend der Hauptströmung über das Wehr.

An Standorten mit Wasserkraftanlagen berücksichtigt die Bewertung zur Einschätzung der großräumigen Auffindbarkeit wie beim Fischaufstieg die Abflussaufteilung bei MQ zwischen Wehr und Wasserkraftanlage (siehe Abb. 5-3) und die zugehörigen Erläuterungen in Kap. 5.2.

Mögliche Wanderwege beim Fischabstieg sind in Abb. 5-5 dargestellt.

Abb. 5-5: Beispiel für die Bewertung der Abwanderung von Fischen an einem Ausleitungskraftwerk
5.3.2 Schutzwirkung von mechanischen Barrieren und kleinräumige Auffindbarkeit

Mechanische Barrieren wie z.B. Rechenbauwerke können eine Passage von Fischen physisch verhindern, wenn die lichte Weite der Öffnungen kleiner ist als die Körperdimensionen der Fische und die Anströmgeschwindigkeit ein Entkommen der Fische von der Barriere ermöglicht.

Die Schutzwirkung einer mechanischen Barriere hängt also von folgenden Parametern ab:

- lichte Stabweite der Rechenstäbe
- Anströmgeschwindigkeit
- Funktionsfähiger, gut auffindbarer Abwanderweg

Die kleinräumige Auffindbarkeit der Abwandeinrichtungen wird in Bezug auf deren Position und Abflussanteil bewertet. Die Bewertung erfolgt gemäß Tab. 5-7.

An den Wasserkraftanlagen der Ilm sind keine Bypässe vorhanden. Für den Ist-Zustand konnte somit eine vereinfachte Bewertung ohne Berücksichtigung von Tab. 5-7 erfolgen. Für den Plan-Zustand wird von optimalen Bedingungen für die kleinräumige Auffindbarkeit von Wanderwegen (Bypässen) ausgegangen.
Tab. 5-7: Bewertung der *Kleinräumigen Auffindbarkeit* von Wanderwegen für die flussabwärts gerichtete Wanderung

<table>
<thead>
<tr>
<th>Bewertungsstufe</th>
<th>Fischökologische Definition</th>
<th>Technische Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unbeeinträchtigte Abwanderung</td>
<td>Keine Wasserkraftnutzung oder Wasserentnahme</td>
</tr>
<tr>
<td>0,975</td>
<td>Die Auffindbarkeit von Abwanderwegen ist nur geringfügig beeinträchtigt</td>
<td>Abstiegsanlage an der Nutzungseinrichtung, Positionierung und Abfluss optimale.</td>
</tr>
<tr>
<td>0,85</td>
<td>Die Auffindbarkeit von Abwanderwegen ist mäßig beeinträchtigt</td>
<td>Abstiegsanlage an der Nutzungseinrichtung, Positionierung und Abfluss von optimalen Bedingungen mäßig abweichend.</td>
</tr>
<tr>
<td>0,60</td>
<td>Die Auffindbarkeit von Abwanderwegen ist erheblich beeinträchtigt</td>
<td>Abstiegsanlage an der Nutzungseinrichtung, Positionierung und Abfluss von den optimalen Bedingungen erheblich abweichend.</td>
</tr>
<tr>
<td>0</td>
<td>Abwanderwege sind nicht vorhanden oder nicht auffindbar.</td>
<td>Keine oder unwirksame Abstiegsanlage an der Nutzungseinrichtung oder Abstiegsanlage nur in sehr geringem Maß auffindbar.</td>
</tr>
</tbody>
</table>
Die untenstehende Tabelle enthält die Schutzraten für Zielarten, die als Arbeitsannahme verwendet werden.

Tab. 5-8: Annahmen für die Schutzrate an mechanischen Barrieren

<table>
<thead>
<tr>
<th>Lichte Stabweite</th>
<th>(v_A \leq 0,5 \text{ m/s})</th>
<th>(v_A > 0,5 \text{ m/s (und < 1 m/s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lachs</td>
<td>0,95</td>
<td>0,90</td>
</tr>
<tr>
<td>Aal</td>
<td>0,975</td>
<td>0,90</td>
</tr>
<tr>
<td><=10 mm</td>
<td>0,70</td>
<td>0,50</td>
</tr>
<tr>
<td>15 mm</td>
<td>0,90</td>
<td>0,75</td>
</tr>
<tr>
<td>20 – 40 mm</td>
<td>0,50</td>
<td>0,25</td>
</tr>
<tr>
<td>>40 mm</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* als relativ kleines Gewässer, bei größeren Gewässern können andere Schutzraten zur Anwendung kommen

Bei den Besichtigungen der Standorte konnten nicht immer die Angaben zum Rechenbauwerk erhoben werden, da ein Teil der WKA nicht zugänglich war, bzw. die EigentümerInnen die Angaben verweigerten. Lagen keine Daten vor, wurde eine pessimale Einschätzung der Anlage vorgenommen, und folgende Annahme getroffen:

Rechenstabw eite > 40 mm → Schutzrate = 0.

Falls nur die senkrecht zur Fließrichtung projizierte Anströmwäche des Rechens A\(_s\) und nicht die Anströmsgeschwindigkeit ermittelt werden konnte, wurde die Anströmsgeschwindigkeit nach folgender Formel berechnet:

\[v = \frac{Q_A}{A_s}\]

mit
- \(v\) = Anströmsgeschwindigkeit [m/s]
- \(Q_A\) = Ausbaudurchfluss der WKA [m\(^3\)/s]
- \(A_s\) = senkrecht zur Fließrichtung projizierte Anströmwäche des Rechens [m\(^2\)]

5.3.3 Passierbarkeit und Schädigung beim Abstieg über das Wehr

Die Bewertung der Passierbarkeit eines Wehres macht eine Aussage darüber, ob Fische bei MQ das Wehr überwinden und den folgenden Abwanderweg (z.B. die
Ausleitungsstrecke) passieren können. Hierzu ist eine ausreichende Überströmung des Wehrs erforderlich.

Bei Unterströmungen von Wehren treten in der Regel so große Strömungsgeschwindigkeiten auf, dass diese zu Schädigungen der Fische führen können. Daher stellen große, auf Spalt geöffnete Wehrverschlüsse keinen geeigneten Abwanderweg dar.

Die Überlebensrate bei der Wehrpassage gibt an, ob Fische bei der Wehrpassage durch große Absturzhöhen, durch Aufprall auf Hindernisse im Unterwasser oder durch zu geringe Wassertiefen auf den Wehrücken Schädigungen erleiden. Die Bewertung erfolgt gemäß Tab. 5-9.

Tab. 5-9: Bewertung der Passierbarkeit von Querbauwerken für abwandernde Fische

<table>
<thead>
<tr>
<th>Überlebensrate s_u</th>
<th>Fischökologische Definition</th>
<th>Technische Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Schädigung abwandernder Fische</td>
<td>Es ist kein Querbaubauwerk vorhanden.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Abwandernde Fische werden nur geringfügig geschädigt.</td>
<td>Absturzhöhe des Querbauwerkes geringer als 10 m UND ausreichendes Wasserpolster (mindestens $\frac{1}{4}$ der Fallhöhe) im Unterwasser; keine Toskörper oder andere Strukturen, die abwandernde Fische gefährden.</td>
</tr>
<tr>
<td>0,75</td>
<td>Abwandernde Fische werden mäßig geschädigt.</td>
<td>Die Absturzhöhe des Querbauwerkes beträgt 10 bis 15 m UND/ODER unzureichendes Wasserpolster (weniger als $\frac{1}{4}$ der Fallhöhe) im Unterwasser, um Schädigungen abwandernder Fische zuverlässig zu verhindern bzw. Toskörper oder andere Strukturen, die eine mäßige Schädigungsrate bewirken.</td>
</tr>
<tr>
<td>0,5</td>
<td>Abwandernde Fische werden erheblich geschädigt.</td>
<td>Die Absturzhöhe des Querbauwerkes beträgt 15 bis 20 m UND/ODER unzureichendes Wasserpolster (wenentlich weniger als $\frac{1}{4}$ der Fallhöhe) im Unterwasser, um Schädigungen abwandernder Fische zuverlässig zu verhindern bzw. Toskörper oder andere Strukturen, die eine erhebliche Schädigungsrate bewirken.</td>
</tr>
<tr>
<td>0</td>
<td>Abwandernde Fische werden sehr stark geschädigt.</td>
<td>Die Absturzhöhe des Querbauwerkes beträgt mehr als 20 m UND/ODER im Unterwasser prallen die Fische auf feste Oberflächen oder Toskörper.</td>
</tr>
</tbody>
</table>

Da alle Querbauwerke an der Ilm der Stufe 2, „passierbar“ zugeordnet werden können, erfolgt pauschal für alle Querbauwerke ohne weitere Nutzung die Festlegung der Überlebensrate auf $s_u = 1$.

Durchgängigkeitskonzept Ilm
5.3.4 Schädigung beim Abstieg durch die WKA

Demnach sind die Mortalitätsraten abhängig von:

- Turbinenbauart und -größe
- Betriebszustand der Maschine (Volllast/Teillast)
- Fischart und -größe.

Die Formel ist vereinfachend und berücksichtigt nur die mechanische Schädigung von Fischen. Sie basiert auf dem Verhältnis zwischen der Tierlänge und dem Abstand der Laufradschaufeln.

Für Lachssmolts wurde mit einer mittleren Körperlänge von ca. 18 cm und für Aale mit ca. 60 cm gerechnet.

Schädigungen durch Druckänderungen, Scherkräfte oder in Folge von Kavitation sowie durch erhöhte Prädatation unterhalb der Turbine wurden nicht berücksichtigt. Die wissenschaftlichen Grundlagen für die Ermittlung der Mortalitätsraten bei der Turbinenpassage sind in diesen Punkten noch lückenhaft.

In der vorliegenden Studie wurden für die Bestimmung der Mortalitätsrate bei der Turbinenpassage in Abhängigkeit vom Ausbaudurchfluss standardisierte Turbinen-
typen ausgewählt. Die sich so für die Standardtypen ergebenden Überlebensraten sind in untenstehender Tabelle wiedergegeben.

Die Überlebensraten hängen im Wesentlichen von der Größe der absteigenden Fische ab. Sie können auch als Abschätzung für andere Arten vergleichbarer Größe verwendet werden bzw. die Methode kann auch auf andere Fischgrößen angewendet werden.

Tab. 5-10: Theoretische Überlebensraten bei der Turbinenpassage (vereinfacht) nach den Formeln von LARINIER & DARTIGUELONGUE (1989) für standardisierte Turbinentypen

<table>
<thead>
<tr>
<th>Ausbaudurchfluss Q_a</th>
<th>Überlebensrate Turbine bei der Turbinenpassage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Francis-Turbine</td>
</tr>
<tr>
<td>Lachs</td>
<td>Aal</td>
</tr>
<tr>
<td>≤10 m³/s</td>
<td>0,8</td>
</tr>
</tbody>
</table>
5.3.5 Gesamtabschätzung Durchgängigkeit abwärts am Standort

Die Abschätzung der Gesamtdurchgängigkeit eines Standortes erfolgte wie in Abb. 5-6 erläutert.

Abb. 5-6: Beispiel verschiedener Abwanderwege und Ermittlung der Schädigungen abwandernder Fische an einem Standort mit WKA (Überlebensrate Standort)

Erläuterungen zu Abb. 5-6:

1.000 Lachssmolts erreichen bei ihrer Abwärtswanderung ein Ausleitungskraftwerk mit einem Ausbaugrad $Q_A/MQ = 1$. Zu diesem Zeitpunkt strömt der gesamte Abluss zum Kraftwerk.

Damit gelangen gemäß der Arbeitsannahme (Abb. 5-3) 900 Smolts zur WKA. Die übrigen 100 Fische wandern ungeschädigt über das Wehr ab.

Die Hälfte der zur WKA wandernden Fische wird am Rechen vor der WKA zum Bypass geleitet, also 450 Smolts. Sie überwinden die gesamte Fischschutzeinrichtung unbeschädigt und erreichen das Unterwasser.

Durch die Turbine wandern die übrigen 450 Smolts.

Bei einer Überlebensrate für die Turbinenpassage von 80 %, gelangen unbeschädet $450 \times 0,80 = 360$ Smolts in den Unterwasserkanal.

Insgesamt durchwandern von den 1.000 Lachssmolts 910 den Standort unbeschädigt. Die Überlebensrate Standort beträgt also 91 %.
5.4 Gewässerbezogene Bewertung für Auf- und Abstieg

Die Aufstiegs- bzw. die Überlebensraten bei auf- und abwandernden Fischen kumulieren sich in vielfach gestauten Gewässern, da sich diese Raten an den einzelnen Standorten entlang der gesamten Staukette, über die die Fische wandern, multiplizieren. Dies kann verdeutlicht werden, wenn man z.B. gleiche Überlebensraten \(q \) an jeder von \(n \) Staustufen annimmt. Dann ergibt sich die Erreichbarkeitsrate-Saale \(p \) aus der Beziehung (Abb. 5-7):

\[
p = q^n
\]

Diese Beziehung gilt aufwärts wie abwärts.

Abb. 5-7: Kumulierte Erreichbarkeitsrate \(p \) auf- oder abwandernder Fische bei der Passage von \(n \) Standorten mit der lokalen Überlebensrate \(q \) (DUMONT et.al. 2005)
Die **Erreichbarkeitsrate** gibt an, welcher Anteil von aufwandernden Fischen in der Lage ist, sein Zielareal zu erreichen. Als Startpunkt wurde dabei die Mündung der Ilm in die Saale gewählt. Für die potamodromen Arten wurde als Startwert 100 % der Fische gewählt, da die Einwanderung in das Nebengewässer an diesem Punkt beginnt. Für die diadromen Arten wurden die Verluste auf dem vom Meer bis zu diesem Startpunkt berücksichtigt und für den optimierten Planzustand ein Startwert von 60 % angesetzt (22 Wanderhindernisse in Elbe und Saale, optimierte Aufstiegsrate pro Standort: ca. 0,975).

Die **kumulierte Abstiegsrate** gibt an, welcher Anteil der von einem Teilareal (Startpunkt) abwandernden Fische in der Lage ist, ungeschädigt die Saale zu erreichen. Die kumulierte Abstiegsrate wurde für die Lachssmolts ermittelt, die vom oberen Ende des Lachsareals abwandernd. Dies ist eine pessimale Annahme, da diejenigen Fische, die an einem weiter unterhalb gelegenen Punkt des Laichareals starten, ggf. eine geringere Zahl von Wanderhindernissen passieren müssen. Diese pessimale Annahme erscheint jedoch gerechtfertigt, weil andere Effekte wie Prädation etc. nicht berücksichtigt wurden.

Für jedes Areal wurde die Zahl der Fische, die die Saale theoretisch erreichen, mit Hilfe der Erreichbarkeitsrate und der Arealfläche ermittelt. Die so ermittelten Werte werden addiert. Das Verhältnis der Zahl, der bei der Abwanderung überlebenden Fische, zur Gesamtzahl der abwandernden Fische ist definiert als die Gesamtüberlebensrate.
5.4.1 Ergebnisse der gewässerbezogenen Raten

Im Ist-Zustand sind die Laichareale in der Ilm oberhalb des fünften Querbauwerks (Darnstedt) von den Fischen nicht zu erreichen. Im Plan-Zustand beträgt die Erreichbarkeitsrate des Areals oberhalb der Untermühle Mellingen 21 %. Unter Berücksichtigung des gesamten Wanderwegs vom Meer bis in die Ilm beträgt die Erreichbarkeitsrate 13 %.

- Die **kumulierte Abstiegsrate** beträgt im Ist-Zustand für Lachse 27 %. Die Maßnahmenkonzepte bewirken, dass diese Rate auf 76 % im Plan-Zustand steigt.

- Die **Gesamtüberlebensrate** in der Ilm liegt für den Aal im Ist-Zustand bei 12 %. Nach Umsetzung der Maßnahmenkonzepte wird eine Gesamtüberlebensrate von 91 % erwartet.

5.5 Beeinträchtigung des Lebensraumes durch Stau und Ausleitung

- Die jeweilige Fischregion eines Gewässers darf zu maximal 25 % ihrer Länge durch Stau- und Ausleitungsstrecken verändert sein.

- Maximal 25 % des Abstandes zwischen zwei Querbauwerken dürfen durch Stau und Ausleitung verändert sein.

 Damit wird ausgedrückt, dass Stauketten vermieden werden sollen, weil ansonsten eine durchgehende Überformung des aquatischen Lebensraums auftritt.

- Diese Veränderungen des Lebensraums sind nur dann zulässig, wenn die Wanderhindernisse einschließlich der Ausleitungsstrecken passierbar gestaltet werden.
• In den Gewässerabschnitten, die eine höhere Beeinträchtigung aufweisen, sind Querbauwerke mindestens in dem Umfang rückzubauen, dass die o. g. Werte eingehalten werden.

Zur Berechnung des Lebensraumverlustes durch Stau und Ausleitung wurden die jeweiligen Rückstau- und Ausleitungsstrecken ermittelt (siehe Abb. 5-8). Dadurch lassen sich die freien Fließstrecken zwischen zwei Querbauwerken berechnen.

Abb. 5-8: Definition der Abschnitte zwischen zwei Querbauwerken

5.5.1 Rückstau

Im Rückstaubereich von Querbauwerken ist die Fließgeschwindigkeit i.d.R. so weit reduziert, dass er als Lebensraum für rheophile Arten verloren ist. Auch Makrozoo-benthath sind in den Staubereichen z.B. aufgrund starker Sedimentation betroffen.

Die Rückstautstrecke konnte innerhalb der Studie nicht lokal bei den Besichtigungen bestimmt werden und wurde daher anhand der folgenden vorliegenden Daten bestimmt:

• Sohlenhöhe am Fuß des Querbauwerks
• Wasserspiegeldifferenz am Querbauwerk durch Aufstau
• Entfernung zwischen den Querbauwerken aus der Gewässerkilometrierung

Aus der Differenz der Sohlenhöhen des betrachteten und des oberhalb liegenden Querbauwerks und der Entfernung zwischen den beiden wurde das Längsgefälle für den Zustand ohne Querbauwerk bestimmt.
Die Rückstaustrecke ergibt sich aus der Multiplikation des Längsgefalles (1:n) mit der Wasserspiegeldifferenz am Querbauwerk. Sie ist also vereinfachend der Abstand zwischen dem Querbauwerk und dem Schnittpunkt der waagerechten Stau- nie mit der Gewässersohle.

Die so bestimmten Rückstaustrecken wurden beispielhaft für ausgewählte Standorte mit einem Längsschnitt aus der aktuellen Gewässervermessung der Ilm im Auftrag der TLUG aus dem Jahr 2009 verglichen, die eine größere Anzahl an Querprofilen mit eingetragenen Wasserspiegellagen enthält. Dabei zeigte sich eine gute Über-einstimmung.

Tab. 5-11: Vergleich berechnete und vermessene Rückstaustrecken ausgewählter Standorte

<table>
<thead>
<tr>
<th>Standort</th>
<th>Querbauwerk</th>
<th>Rückstaulänge aus Berechnung [m]</th>
<th>Rückstaulänge aus Vermessung [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL 02 Wehr Saline Bad Sulza</td>
<td>Wehr mit beweglichem Verschluss</td>
<td>~ 1000</td>
<td>~ 1000 bis 1200</td>
</tr>
<tr>
<td>IL 06 Mühle Eberstedt</td>
<td>Raue Rampe</td>
<td>~ 1400</td>
<td>~ 1200</td>
</tr>
<tr>
<td>IL 11 Mühle Vent Mattstedt</td>
<td>Festes Streichwehr</td>
<td>~ 700</td>
<td>~ 550</td>
</tr>
<tr>
<td>IL 21 Burgmühle Weimar</td>
<td>Festes Streichwehr</td>
<td>~ 930</td>
<td>~ 460 bis 1500</td>
</tr>
<tr>
<td>IL 30 Obermühle Hetschburg</td>
<td>Raue Rampe</td>
<td>~ 370</td>
<td>~ 400</td>
</tr>
<tr>
<td>IL 33 Wehr Martinswerk</td>
<td>Festes Wehr mit Aufsatz</td>
<td>~ 560</td>
<td>~ 600</td>
</tr>
</tbody>
</table>

5.5.2 Ausleitung

In Ausleitungsstrecken (Abb. 5-8) führt der verringerte Abfluss zu einer Veränderung des typspezifischen Lebensraums, z.B. durch geringere Wassertiefen und Fließgeschwindigkeiten.

Bei der Ermittlung der Länge der Ausleitungsstrecken wurde nicht berücksichtigt, ob ein Mindestabfluss \(Q_{\text{min}} \) vorhanden ist, der den gesetzlichen Bestimmungen genügt, da Angaben zu \(Q_{\text{min}} \) nicht für alle Standorte vorliegen.
Durchgängkeitskonzept Ilm

Die Länge der Ausleitungsstrecken der Ilm wurde aus den digitalen Flurkarten mit Hilfe eines CAD-Programms ermittelt.

5.5.3 Freie Fließstrecke

Die freie Fließstrecke zwischen zwei Querbauwerken ist der Abstand dieser beiden Querbauwerken abzüglich der Rückstau- und Ausleitung der unter- und oberwasserseitigen Querbauwerke. Ist die Summe aus Rückstau- und Ausleitung zwischen zwei Querbauwerken größer als der Abstand, reicht also die Stauwurzel des unterwasserseitigen Querbauwerks in die Ausleitungsstrecke des oberwasserseitigen Querbauwerks, oder sogar bis zum oberwasserseitigen Querbauwerk selbst, so gibt es keine freie Fließstrecke.

5.5.4 Beeinträchtigung des aquatischen Lebensraumes

Der Anteil des unbeeinträchtigten Lebensraumes zwischen zwei Querbauwerken ergibt sich aus dem Verhältnis der freien Fließstrecke zum Abstand dieser beiden Querbauwerke.

Die Summe aus Rückstau- und Ausleitungsstrecke zwischen zwei Querbauwerken im Verhältnis zum Abstand dieser beiden Querbauwerke ergibt den Anteil der Beeinträchtigungen des Lebensraums.

Ist keine freie Fließstrecke zwischen zwei Querbauwerken vorhanden, so ist die gesamte Strecke beeinträchtigt.

Die Beeinträchtigungen des Lebensraumes der jeweiligen Fischregion eines Gewässers ergeben sich aus der Summe aller beeinträchtigten Strecken in der betrachteten Fischregion im Verhältnis zur Gesamtlänge dieser Fischregion.
5.5.5
Randbedingungen für die Betrachtung der Ilm

Aus der Gesamtbetrachtung der Ilm hinsichtlich der Beeinträchtigung durch Stau- und Ausleitungsstrecken wurden die Standorte herausgenommen, die eine eigene Bezeichnung tragen, aber eigentlich Teil eines Gesamtstandortes im Sinne von Abflussverteilung des Ilmabflusses sind.

Dies betrifft die Standorte IL 08 Mühlgraben Wickerstedt und IL 10 Sohlgleite Ilmleche Wickerstedt, die zum Gesamtstandort Wickerstedt gehören. Es geht also nur der Standort IL 09 Wehr Haderlache Ilm in die Betrachtungen des Lebensraumverlustes ein.

Ebenso wurde aus der Betrachtung der Standort IL 45 Wehr Oberilm herausgenommen, da es sich um ein (ehemaliges) Abschlagswehr des ehemaligen Standortes IL 44 Wehr StadtIlm Domal-Wittol handelt. Diese aus der Betrachtung herausgenommenen Standorte stellen keinen eigenständigen Staubereich und keine Ausleitungsstrecke dar. Auch der zusätzliche Standort IL 28a Mühle Oettern wurde nicht in die Betrachtungen einbezogen, da das Querbauwerk schon vor einiger Zeit in eine Sohlengleite umgebaut wurde und die Ilm nicht mehr beeinflusst. Dies entspricht der Einschätzung der TLUG.

Somit verbleiben von 70 Standorten noch 66 Standorte, für die die Beeinflussung von einem Querbauwerk zum nächsten Querbauwerk berechnet wurde. Es ergaben sich 67 Einzelabschnitte, davon 65 Abschnitte zwischen zwei Querbauwerken und zwei Abschnitte zwischen dem ersten QBW und der Mündung in die Saale und zwischen dem letzten Bauwerk und der Quelle der Ilm.

5.5.6
Ergebnisse des Lebensraumverlusts

Die Fließlänge der Ilm beträgt 130 km. Davon entfallen auf die Barbenregion (28,21 km), Äschenregion (86,09 km), Untere Forellenregion (11,5 km) und Obere Forellenregion (4,2 km).

Die Beeinträchtigungen der Ilm durch Stau- und Ausleitungen können wie folgt zusammengefasst werden:
• Der Grenzwert von 25 % als Maßstab für den guten ökologischen Zustand wird im Ist-Zustand für die Äschenregion (25 %) und die Obere Forellenregion (6,5 %) eingehalten.

• Die Barbenregion (45 %) weicht sehr stark von dem als geringfügig einzustufenden Streckenanteil ab, die Untere Forellenregion (26 %) liegt nur knapp über dem Grenzwert.

• Die Gesamtbeeinflussung der Ilm beträgt derzeit 29 %.

Hinsichtlich des Mindestabstandes zwischen zwei Querbauwerken zur Gewährleistung freier Fließstrecke ergibt sich:

• Insgesamt sind 6 Abschnitte zwischen zwei Querbauwerken zu 100 % beeinträchtigt, davon befinden sich 3 in der Barbenregion. Der zu fordernde Anteil von 75 % freier Fließstrecke wird bei 40 von 67 Abschnitten nicht eingehalten.

Durch die vorgeschlagenen Rückbaumaßnahmen im Plan-Zustand kann die Gesamtbeeinträchtigung der Ilm auf 27 %, diejenige der Barbenregion auf 41 % verringert werden. Die Untere Forellenregion wäre noch zu 20 % beeinträchtigt. Die Anzahl der maximal 25 % beeinträchtigten Abschnitte zwischen zwei Querbauwerken könnte auf 33 reduziert werden. Es verblieben jedoch 5 Abschnitte, die zu 100 % beeinträchtigt sind, davon immer noch 3 in der Barbenregion.

Da die in den TLUG (2009) geforderten zulässigen Beeinträchtigungen nicht erfüllt werden können, müssen weitere Maßnahmen entwickelt werden, um die Bedingungen für den guten ökologischen Zustand zu erfüllen. Diese Variantenbetrachtung und die daraus abzuleitenden Schlussfolgerungen werden in Kapitel 7 behandelt.

Die Ergebnisse der Untersuchung der Stau- und Ausleitungsstrecken der Ilm befinden sich in Anlage 9.
6
Prüfung von Querbauwerken entsprechend § 35 WHG

6.1
Veranlassung

In § 35 der aktuellen Fassung des Wasserhaushaltsgesetzes (WHG 2010) wird zur Wasserkraft ausgeführt:

(1) Die Nutzung von Wasserkraft darf nur zugelassen werden, wenn auch geeignete Maßnahmen zum Schutz der Fischpopulation ergriffen werden.

(2) Entsprechen vorhandene Wasserkraftnutzungen nicht den Anforderungen nach Absatz 1, so sind die erforderlichen Maßnahmen innerhalb angemessener Fristen durchzuführen.

(3) Die zuständige Behörde prüft, ob an Staustufen und sonstigen Querbauwerken, die am 1. März 2010 bestehen und deren Rückbau zur Erreichung der Bewirtschaftungsziele nach Maßgabe der §§ 27 bis 31 auch langfristig nicht vorgesehen ist, eine Wasserkraftnutzung nach den Standortgegebenheiten möglich ist. Das Ergebnis der Prüfung wird der Öffentlichkeit in geeigneter Weise zugänglich gemacht.

Zur Erfüllung dieser Prüfpflicht nach Absatz 3 wurde innerhalb der Studie ein Verfahren entwickelt, mit dem die Querbauwerke an der Ilm im Hinblick auf eine mögliche Wasserkraftnutzung untersucht wurden.

Um der Prüfpflicht entsprechend § 35 (3) für alle feststehenden Querbauwerken zu genügen, wäre eine derartige Vorgehensweise zu aufwändig und behördlicherseits für ein ganzes Bundesland nicht im erforderlichen Zeitraum zu leisten. Das entwickelte Verfahren erlaubt mit sinnvollen Vereinfachungen und Annahmen die Identifizierung geeigneter Standorte.

Da bei einem solchen Verfahren keine Standortbesonderheiten (insbesondere Eigentumsverhältnisse und wirtschaftlichen Ziele des Investors) berücksichtigt werden
können, kann die Bewertung einer potenziellen Wasserkraftnutzung im Einzelfall von der Einschätzung durch Investoren abweichen.

6.2 Methodik

Für alle Standorte von Querbauwerken im Gewässer wurde das technische Wasserkraftpotenzial ermittelt. Dazu wurde die Ausbauleistung mit Hilfe der nutzbaren Fallhöhe und des verfügbaren Ausbaudurchflusses unter Annahme mittlerer Wirkungsgrade abgeschätzt.

Multipliziert mit der Einspeisevergütung von 11,67 ct/kWh für Modernisierung und 12,67 ct/kWh für Neubau nach EEG 2009 ergab sich daraus der durchschnittliche Jahresrohertrag der Anlage pro Jahr.

Dieser Jahresrohertrag wurde mit den abgeschätzten Investitionskosten für die bauliche Realisierung der Anlage verglichen. Dafür wurden Kostenkurven mit Erfahrungswerten aus geplanten und realisierten Projekten genutzt.

Das Verhältnis der Investitionskosten zum Rohertrag gibt einen Anhaltspunkt für die Nutzungswahrscheinlichkeit. Diese ist umso geringer, je höher dieser Faktor ist.

6.2.1 Prüfkriterien

Für Standorte, bei denen folgende Faktoren vorliegen, wurde eine Wasserkraftnutzung ausgeschlossen:
• Neue Querbauwerke zur Wasserkraftnutzung sind nicht zulässig (keine EEG-Förderung, erhebliche Verschlechterung des bestehenden Zustands durch neuen Aufstau).

• Der Ausbaugrad, also das Verhältnis des gewählten Ausbaudurchflusses der Anlage zum Mittelwasserabfluss des Standortes, wurde auf 1,0 festgelegt, da bei kleinen WKA höhere Ausbaugrade nur unter sehr speziellen Randbedingungen wirtschaftlich sind. Dies hat zur Folge, dass Standorte, die bereits auf Mittelwasser oder höher ausgebaut sind, kein Ausbaupotenzial aufweisen.

• Standorte mit sehr geringer nutzbaren Fallhöhe (H ≤ 0,60 m) oder mit sehr geringen nutzbaren Abflussanteilen (Q ≤ 1 m³/s) wurden nicht weiter betrachtet. Damit beträgt die minimale elektrische Leistung einer möglichen Wasserkraftanlage \(P_{el} = \text{ca. 5 kW} \). Diese Grenze wird auch von anderen Bundesländern wie z.B. Hessen angesetzt.

6.2.2 Grobschätzung für Ausbauleistung und Jahresarbeit

Die mögliche Ausbauleistung wurde abgeschätzt mit der Formel:

\[P = 8 \times Q_a \times h_a. \]

Hierin bedeuten:

\(Q_a \) = Ausbaudurchfluss in m³/s

\(h_a \) = Ausbaufallhöhe in m

8 = Faktor zur Berücksichtigung der Maschinenwirkungsgrade und der Einheitenumrechnung. Der Faktor 8 entspricht etwa einem Gesamtwirkungsgrad von 81,5 % unter Berücksichtigung von Rechen- und Auslaufverlusten etc. und ist für neu gebaute bzw. technisch modernisierte Anlagen ein typischer Wert.

\(P \) = Elektrische Leistung in kW

Die Fallhöhe an einem Querbauwerk bzw. einer Wasserkraftanlage wurde aus vorliegenden Bestands- und Wasserrechtsunterlagen ermittelt und bei einer Berücksichtigung des Standortes örtlich überprüft. Als Ausbaufallhöhe gilt die Wasserspie-
Durchgängigkeitskonzept

Die durchgängige Ermittlung der Ausbaufallhöhe bezüglich Ober- und Unterwasserspiegel, die sich beim Mittleren Ablauf (MQ) einstellt. Eine genaue Ermittlung dieses Wertes wäre nur mit Hilfe einer hydraulischen Berechnung möglich. Daher sind folgende Aspekte zu beachten:

- Die in dieser Studie ermittelte Ausbaufallhöhe kann auf methodischen Gründen (ungenaue Angaben in vorhandenen Unterlagen, von MQ abweichende Abläufe bei der Besichtigung) vom exakten Wert abweichen.

- Die mögliche Abweichung bei der Einschätzung der Ausbaufallhöhen sowie die eventuell Fallhöhenvergrößerungen bewegen sich erfahrungsgemäß an den meisten Standorten im Bereich von ± 10%. Diese Abweichungen haben keinen wesentlichen Einfluss auf das Ergebnis der wirtschaftlichen Überprüfung, da die Parameter Vollaststunden, Kostenansätze und Wirtschaftlichkeitsquotient bewusst noch im Sinn einer positiven Abschätzung des Potenzials gewählt wurden.

Die am Standort zu erzielende Jahresarbeit E_a wurde unter Ansatz der Jahresvollaststunden zu:

$$E_a \text{(kWh)} = \text{Vollaststunden (h)} \times \text{P (kW)}$$

6.2.3

Grobschätzung der Investitionskosten

6.2.3.1 Grundlegendes

Grundsätzlich gibt es einen Zusammenhang zwischen dem Quotienten aus Leistung und Fallhöhe und den entstehenden spezifischen Kosten pro kW installierte Leistung gemäß nachstehender Funktion, entnommen aus (WBW, 1994).

\[K = C \cdot \left(\frac{P}{h_f^{0.3}} \right)^y \]

Mit:
\[K = \text{Kosten [Euro]} \]
\[y = \text{Konstante [-]} \]
\[C = \text{Konstante [Euro]} \]
\[P = \text{Anlagenleistung [kW]} \]
\[h_f = \text{Ausbaufallhöhe [m]} \] (Bestand, keine Stauerhöhung)

Die Verwendung dieser Formel hat gegenüber dem einfachen Ansatz eines festen spezifischen Kostenfaktors wie beispielsweise 5.000 Euro pro kW installierte Leistung den Vorteil, dass zwei wichtige Aspekte zum berücksichtigt werden können:

- Auch bei kleinen Anlagen reduzieren sich die Kosten mit größer werdenden Fallhöhen bei gleicher Leistung durch die im Verhältnis kleineren Turbinenabmessungen;
- Bei Ausbauleistungen bis 100 kW nehmen die spezifischen Investitionskosten mit zunehmender Anlagenleistung sehr stark ab.

Die Genauigkeit dieser Kostenschätzung ist jedoch begrenzt. Dies ist bedingt durch die enorme Bandbreite an Einflussfaktoren für die Investitionskosten von Kleinwasserkraftanlagen, die im Rahmen einer gewässerweiten Voruntersuchung nicht erfasst werden konnten.

Das angewendete Verfahren bietet den Vorteil in einem Einzugsgebiet verschiedene Standorte untereinander und in unterschiedlichen Einzugsgebieten Standorte jeweils miteinander vergleichen zu können. Dies kann eine wichtige Hilfe bei der Abwägung zwischen ökonomischen Nutzen und ökologischen Auswirkungen sein, die heute bei der Projektierung umweltrelevanter Maßnahmen unumgänglich ist.

6.2.3.2
Kostenschätzung für Neubau

Der erläuterte empirische Formelansatz wurde in der Kostenschätzung für vier Kostenarten mit jeweils unterschiedlichen Faktoren C und Exponenten y verwendet:

Baukosten:

\[K_a = 17500 \cdot \left(\frac{P}{h_f} \right)^{0.71} \]

Maschinatechnische Ausrüstung:

\[K_m = 10000 \cdot \left(\frac{P}{h_f} \right)^{0.85} \]

Elektrotechnische Ausrüstung:

\[K_e = 500 \cdot \left(\frac{P}{h_f} \right)^{0.98} \]
Stahlwasserbau:

\[K_{st} = 1000 \cdot \left(\frac{P}{h_f} \right)^{0.84} \]

Nicht enthalten sind Grunderwerbs- und Erschließungskosten.

Projektnebenkosten wie Planung etc. wurden pauschal mit 15 % angesetzt.

Die Gesamtkosten ergeben sich damit zu:

\[K_{gs} = (K_a + K_m + K_c + K_st) \cdot 1,15 \]

Es wurden jeweils die Kosten angesetzt, die für den Standort relevant sind.

Wichtig ist der Hinweis, dass durch die Aufgliederung in die vier Kostenteilbereiche keine insgesamt höhere Genauigkeit in Bezug auf die absolut entstehenden Kosten erreicht wird, sondern die Kosten differenzierung einen genaueren Vergleich von Standorten untereinander bei jeweils gleichen Randbedingungen mit geringem Mehraufwand ermöglicht.

6.2.4 Jahresertrag

Für künftige Investitionen im Bereich der Modernisierung von Wasserkraftanlagen wird nach EEG 2012 der Tarif auf 12,7 ct/kWh angehoben und damit eine Verbesserung der Erträge erreicht. Da das Gesetz veränderte Vorschriften für die ökologische und die energetischen Verbesserungsmaßnahmen enthält, die ggf. erhöhten Kosten bedeuten, wurden in der vorliegenden Studie die Tarife der aktuell gültigen Fassung des EEG 2009 zu Grunde gelegt.
6.2.5

Quotient Investitionskosten zu Jahresrohertrag

Der Quotient der Investitionskosten zum Jahresrohertrag definiert einen Anhaltspunkt für die Einschätzung der Wirtschaftlichkeit einer Wasserkraftanlage:

- Bei einem Faktor < 20 besteht nach langjährigen Erfahrungen eine hohe Wahrscheinlichkeit für eine wirtschaftliche Nutzung durch einen Investor.
- Bei einem Faktor zwischen 20 und 30 ist die Wahrscheinlichkeit einer wirtschaftlich möglichen Nutzung eher von sonstigen Randbedingungen und Zusatznutzen (touristischer Wert, Eigennutzung o.ä.) abhängig.
- Bei einem Faktor >30 ist die Wahrscheinlichkeit einer wirtschaftlichen Nutzung des Standortes sehr gering.

Der Quotient gibt eine grobe wirtschaftliche Einschätzung der Standorte. Im Einzelfall ist immer eine detaillierte Untersuchung des Standortes erforderlich.

Aus den vorliegenden Erfahrungen mit ähnlichen Verfahren in anderen Bundesländern kann abgeleitet werden, dass Standorte mit einem Wirtschaftlichkeitsfaktor >30 in der Regel nicht realisiert wurden, da keine ausreichende Rentabilität zur Finanzierung erreicht werden kann.

6.3

Zusätzliches Wasserkraftpotenzial in der Ilm

Unter Anwendung der oben genannten Kriterien verbleiben in der Ilm 4 Standorte, die ein Verhältnis von Investition zum Jahresrohertrag zwischen 20 und 30 aufweisen, davon nur 2 (Darnstedt, Obere Mühle Zottelstedt) die bisher keine Nutzung aufweisen:

Obere Mühle Zottelstedt: Es liegen erste Vorplanungen zur ökologischen Umgestaltung des Standortes ohne Wasserkraftnutzung vor. Dies ist auch im Hinblick auf den zu hohen Anteil von Staustrecken in der Barbenregion erforderlich. Eine Wasserkraftnutzung würde die Erreichung des guten ökologischen Zustands weiter gefährden.

Mühle Darnstedt: Nach den augenscheinlichen Standortgegebenheiten ist eine größere Wehrsanierung bzw. ein kompletter Wehrneubau erforderlich. Daher ist eine Wasserkraftnutzung ökologisch kaum realisierbar.

Mühle Eberstedt: Es besteht kein Platz zum Neubau einer weiteren WKA neben der vorhandenen Mühle. Daher besteht kein Ausbaupotenzial.
Mühle Obertrebra: Bei Erhöhung des Ausbaugrades wäre der Bau einer zweiten Fischaufstiegsanlage mit Erhöhung der Dotation in der Ausleitungsstrecke erforderlich. Dies würde den Quotienten über 30 anheben und damit einen Ausbau ökonomisch unrealistisch machen.

An allen vier Standorten erscheint damit auf Grund der beschriebenen Randbedingungen eine zusätzliche Wasserkraftnutzung nicht mehr möglich oder sehr fraglich.

Die tabellarische Übersicht aller Standorte mit den wichtigsten Standortparametern ist der Anlage 11 zu entnehmen.
7

Variantenbetrachtung zum Lebensraumverlust durch Stau und Ausleitung

Mit den vorgeschlagenen Maßnahmen zur Herstellung der Durchgängigkeit können die Forderungen der WRRL und der Mindestanforderungen in Thüringen (TLUG (2009)) erfüllt werden, wenn die Auffindbarkeit und Passierbarkeit der Fischaufstiegsanlagen mit hoher Qualität realisiert wird bzw. durch den Rückbau von Querbauwerken die Gewässermorphologie am Standort leitbildgerecht wiederhergestellt wird.

7.1.1 Anteil der Stau- und Ausleitungsstrecken

Durch den Rückbau derjenigen Querbauwerke im Plan-Zustand, bei denen keine Nutzungen oder Restriktionen vorliegen, kann die Beeinflussung der Unteren Forellenregion auf 20 %, der Äschenregion auf 24 % und der Barbenregion auf 41 % reduziert werden. Die Gesamtbeeinflussung der Ilm reduziert sich dadurch im Plan-Zustand von 29 % auf 27 %.

Um die Forderungen von 25 % für die Barbenregion einzuhalten, müssen demnach weitere Querbauwerke außer dem schon vorgesehenen IL 05 Wehr Darnstedt identifiziert werden, die zurückzubauen sind. In einem ersten Schritt wurden diejenigen Standorte ausgewählt, an denen keine Nutzung vorhanden ist (Variante 3). Dazu gehören in der Barbenregion beide Mühlen in Zottelstedt (IL 12 und 13) und die Sohlengleite Großheringen (IL 01). Durch den Rückbau dieser Querbauwerke in der Barbenregion kann der Lebensraumverlust auf 35 % vermindert werden. Für die gesamte Ilm sinkt die Beeinflussung dann auf 20 %.

Um das Ausmaß der Lebensraumbeeinträchtigung weiter zu reduzieren, können die Ausleitungsstrecken der Standorte mit Ausleitungsleistung erkenntlich ökologisch aufgewertet werden. Voraussetzung dafür, dass diese Strecken nicht mehr in die Berechnung der Lebensraumbeeinträchtigung eingehen, ist, dass an diesen Standorten die Mindestabflüsse ausreichend hoch bemessen werden, um die Lebensraumfunktion des Gewässers auch in den Ausleitungsstrecken zu gewährleisten (Variante 4). Zur Erfüllung dieser Anforderung müssen die Mindestabflüsse an diesen Standorten fachlich (d.h. vor allem fischbiologisch) überprüft und die Wasserrechte entspre-
Durchgängigkeitskonzept Ilm

Durch eine derartige Aufwertung der Ausleitungsstrecken könnte der Lebensraumverlust in der Barbenregion auf 37 % begrenzt werden.

Eine weitere Verbesserung wäre durch die Kombination von Rückbaumaßnahmen und Aufwertung der Ausleitungsstrecken zu erreichen (Variante 5): die Beeinträchtigung der Barbenregion durch Stau und Ausleitung sinkt auf 30 %.

Die wesentlichen Ergebnisse der Beeinträchtigung durch Stau und Ausleitung sowie der Variantenbetrachtung für die Barbenregion sind in Tab. 7-1 und in Tab. 7-2 dargestellt. Die ausführlichen Ergebnisse befinden sich in Anlage 10.

Tab. 7-1: Übersicht Ergebnisse aus Betrachtungen Lebensraumverlust hinsichtlich der Fischregionen

<table>
<thead>
<tr>
<th>Szenario</th>
<th>Beeinträchtigung Barbenregion [%]</th>
<th>Beeinträchtigung Åschenregion [%]</th>
<th>Beeinträchtigung Untere Forellenregion [%]</th>
<th>Beeinträchtigung Obere Forellenregion [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Ist-Zustand</td>
<td>45</td>
<td>25</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>2 - Plan-Zustand (Rückbau)</td>
<td>41</td>
<td>24</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>3 - Rückbau weiterer QBW ohne Nutzung (nur Barbenregion)</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 - Ausleitungsstrecken aus Berechnung herausgenommen (erhöhte Mindestwasserabgabe, nur Barbenregion)</td>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5 - Kombination aus 3 und 4</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Grundsätzlich ist anzumerken, dass die Berechnung des Längsgefälles der Ilm zur Bestimmung der Rückstaulängen (vg. Kapitel 5.5.1) eine gewisse Ungenauigkeit aufweist und im Detail zu überprüfen ist. Wegen dieser Einschränkungen kann eine Abweichung von 5 % beim Anteil der Stau- und Ausleitungsstrecken im jetzigen Stadium der Untersuchung toleriert werden. Die Barbenregion könnte damit bei Szenario 5 das 25 %-Kriterium annähernd erfüllen.
7.1.2
Mindestabstand von Querbauwerken

Tab. 7-2: Lebensraumverlust durch Stau und Ausleitung zwischen Querbauwerken und in der gesamte Ilm

<table>
<thead>
<tr>
<th>Szenario</th>
<th>Anzahl Beeinträchtigung zwischen zwei QBW ≤ 25 %</th>
<th>Anzahl Beeinträchtigung zwischen zwei QBW > 25 %</th>
<th>Anzahl Beeinträchtigung zwischen zwei QBW = 100 %</th>
<th>Gesamt-Beeinträchtigung der Ilm durch Stau und Ausleitung in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Ist-Zustand</td>
<td>27</td>
<td>39</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>2 - Plan-Zustand (Rückbau)</td>
<td>33</td>
<td>33</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>3 - Rückbau weiterer QBW ohne Nutzung (nur Barbenregion)</td>
<td>34</td>
<td>32</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>4 - Ausleitungsstrecken aus Berechnung herausgenommen (erhöhte Mindestwasserabgabe, nur Barbenregion)</td>
<td>33</td>
<td>33</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>5 - Kombination aus 3 und 4</td>
<td>34</td>
<td>32</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>
Die Ergebnisse der vorangegangenen Betrachtung lassen sich wie folgt zusammenfassen:

- Der zulässige Lebensraumverlust durch Stau- und Ausleitungsstrecken wird in der Barberegion überschritten und kann auch durch alle vorgeschlagenen Maßnahmen nicht unterschritten werden.

- Auch bei dem weitestgehenden Maßnahmen-Szenario ist die freie Fließstrecke zwischen zwei Querbauwerken in 32 von insgesamt 67 Abschnitten zu gering.

Daraus lassen sich wesentliche Schlussfolgerungen hinsichtlich der Wasserkraftnutzung an der Ilm ziehen:

- Der Bau zusätzlicher Querbauwerke mit WKA in der Ilm ist angesichts der bestehenden Belastungen nicht vertretbar und würde dem Verschlechterungsverbot der WRRL widersprechen. Das EEG 2009 sieht außerdem für derartige Neuerrichtungen keine Vergütung vor.

- Eine Stauerhöhung an bestehenden Querbauwerken ist angesichts der bereits vorhandenen Unterschreitung des Mindestabstands ökologisch negativ zu beurteilen.

Wegen der bestehenden Belastungen und Beeinträchtigungen sollten neben der Wiederherstellung der Durchgängigkeit vielmehr folgende Entwicklungsziele gelten:

- Mittelfristiger Rückbau von weiteren Querbauwerken in und außerhalb der Barberegion, um die Beeinträchtigung der Fließstrecke zwischen zwei Querbauwerken zu reduzieren.

- Langfristiger Rückbau derjenigen Querbauwerke und Wasserkraftanlagen, deren ökologische Auswirkungen am schwerwiegendsten sind. Dies sind vor allem die sechs Standorte (im Ist-Zustand), zwischen denen die Beeinträchtigung durch Stau und Ausleitung 100 % beträgt (Stauketten).

keitsquotienten könnten, anstelle einer Maßnahmenförderung, gegen Entschädigung abgelöst und anschließend rückgebaut werden.

8 Zusammenfassung, Ergebnisse

Die Herstellung der Durchgängigkeit ist eine zentrale Aufgabe zur Zielereichung eines guten ökologischen Gewässerzustands, wie er in der Europäischen Wasserrahmenrichtlinie für alle Gewässer grundsätzlich gefordert wird.

In Thüringen sind Schwerpunktgewässer zur Herstellung der Durchgängigkeit ausgewählt worden, zu denen auch die Ilm gehört.

Ziel der vorliegenden Untersuchung war die Entwicklung eines auf das gesamte Gewässer bezogenen Durchgängigkeitkonzepts am Beispiel der Ilm. Die erarbeitete Methodik zur vollständigen Bearbeitung der Themen flussauf- und flussabwärtsgerichtete Durchgängigkeit und Wasserkraftpotenzial kann für andere Gewässer genutzt werden. Nachfolgend werden die einzelnen Arbeitsschritte sowie die Ergebnisse zusammengefasst.

8.1 Bearbeitungsgrundlagen

Die für die Bearbeitung notwendigen Unterlagen (Plan- und Genehmigungsunterlagen, hydrologische und hydraulische Daten, Gewässerstrukturgütekartierung usw.) wurden von der TLUG zur Verfügung gestellt und in einer eigens zu diesem Zweck eingerichteten Internetplattform gesammelt. Die hydrologischen Daten sind diesem Bericht als Anlage 1 beigefügt.
8.2 Ergebnis der Standortbegehungen (Ist-Zustand)

Im Rahmen der Studie wurden 70 Querbauwerksstandorte an der Ilm besichtigt, davon 22 Standorte mit Wasserkraftnutzung. Für jeden Standort wurden detaillierte Standortbeschreibungen angelegt, die alle bei der Besichtigung zugänglichen und für die weitere Bearbeitung notwendigen Informationen enthalten. Die Standortbeschreibungen sind als Anlage 2 diesem Bericht beigefügt.

Auf Basis der Standortbeschreibungen wurde eine Tabelle mit der Zusammenstellung der Bewertungen der Durchgängigkeit erstellt, die in Anlage 3 wiedergegeben ist. Das Bewertungsverfahren wurde auf Basis der in (TLUG, 2009) aufgelisteten Kriterien entwickelt und wird im Kap. 4 dieses Berichtes näher beschrieben. Da viele Fischarten bei ihren Wanderungen eine Kette von Querbauwerken passieren müssen, ist die Betrachtung sowohl der zu erwartenden Effektivität der einzelnen Auf- und Abstiegsanlagen als auch der kumulierten Wirkung aller zu passierenden Standorte ausschlaggebend.

Tabelle in Anlage 3 verdeutlicht zwei für das Gewässer relevante Aspekte:

- Schon ein einziges nicht passierbares Querbauwerk unterbricht dauerhaft die Wanderung der Fische und
- mehrere eingeschränkt passierbare Querbauwerke reduzieren durch die Kumulation der Auf- oder Abstiegsraten die Erreichbarkeit von Zielgebieten (beispielsweise Laichareale) deutlich.

Für die Durchgängigkeit der Ilm ergibt sich folgende Gesamtbewertung:

Ist-Zustand flussaufwärts

Die flussaufwärts gerichtete Durchgängigkeit der Ilm ist unzureichend:

Diadrome und potamodrome Fischarten, die aus der Saale in das Gewässer aufsteigen, können das Areal oberhalb des 5. Querbauwerks nicht erreichen.

Ist-Zustand flussabwärts

Die flussabwärts gerichtete Durchgängigkeit und der Fischschutz ermöglichen insbesondere den diadromen Arten keine ausreichende Erreichbarkeit der Saale:

Nur 27 % der am oberen Ende des Laichareals startenden Lachssmolts können die Saale erreichen. Die Gesamtüberlebensrate des Aals ist 0 %.
8.3 Maßnahmenkonzepte

Für die Standorte mit Wasserkraftnutzung wurden neben den Konzepten für den Aufstieg auch Lösungsansätze für den Abstieg erarbeitet.

8.4 Konzeptbewertung

Zur Beurteilung der Notwendigkeit und Priorisierung von Maßnahmen wurden die vorgeschlagenen Maßnahmenkonzepte hinsichtlich ihrer Wirkung auf Auffindbarkeit und Passierbarkeit bewertet und für jeden Standort eine Aufstiegsrate ermittelt, die die biologische Effektivität repräsentiert. Durch Multiplikation der standortbezogenen Aufstiegsraten entlang der jeweiligen Wanderrouten der Fische ergeben sich die flussaufwärts gerichteten Erreichbarkeitsraten der einzelnen Laich- und Aufwuchsareale.

So sind Lachse historisch in der Ilm bis etwa auf Höhe Mellingen aufgewandert. Nach dem Bau von Fischaufstiegsanlagen an allen Standorten können von 100 aufwanderwilligen Fischen am untersten Wehr (Saline Bad Sulza) rechnerisch nur 21 Fische das Ölmühlenwehr in Mellingen erreichen. Berücksichtigt man die Verluste bei der Aufwanderung der Lachse auf dem Weg vom Meer für den optimierten Planzustand (22 Wanderhindernisse in Elbe und Saale, optimierte Aufstiegsrate pro Standort: ca. 0,975), so werden von 100 adulten Lachsen aus dem maritimen Bereich nur 60 Tiere die Mündung der Ilm in die Saale erreichen. Bei Berücksichtigung dieses Ausdünnungseffektes entlang der Wanderroute in der Saale sinkt die Erreichbarkeitsrate für den Standort Mellingen auf 13%.
Die Ergebnisse dieser Berechnungen mit den jeweiligen Annahmen für die einzelnen Standorte sind der als Anlage 6 beigefügten Tabelle zu entnehmen.

8.5 Kostenschätzung

Für die im Rahmen der Ilmstudie erstellten Maßnahmenkonzepte wurde ein Kostenschätzungsverfahren auf der Basis von Erfahrungswerten für bereits realisierte Anlagen verwendet. Dieses Verfahren ist in Kap. 4.5 näher beschrieben. Die Ergebnisse für die einzelnen Standorte sind in der als Anlage7 beigefügten Tabelle zusammengestellt.

8.6 Mindererzeugung

Künftig entsteht an den Wasserkraftanlagen durch die Abgabe eines ökologischen Abflusses eine Mindererzeugung an elektrischer Energie. Für alle Wasserkraftstandorte an der Ilm wurde mit einem in Kapitel 4.7 näher beschriebenen Verfahren die Mindererzeugung an jeder Anlage ermittelt.

Aus der als Anlage 8 beigefügten Aufstellung lässt sich entnehmen, dass die Umsetzung der vorgeschlagenen Maßnahmen bei einigen Anlagen in Folge der höheren Tarife entsprechend EEG 2009 (und auch EEG 2012) zu Mehreinnahmen führt.
8.7
Stau und Ausleitung

In der Ilm wird das 25% - Kriterium in der Barbenregion mit 45 % deutlich überschritten. Durch den Rückbau von Querbauwerken könnte dieser Anteil auf etwa 41 % abgesenkt werden. Da die übrigen Stau- und Ausleitungsstrecken durch den Betrieb von Wasserkraftanlagen verursacht werden, sind weitere Rückbaumaßnahmen bei Fortbestand dieser Nutzungen nicht möglich.

Eine Übersicht der Stau- und Ausleitungsstrecken der Ilm mit ihren jeweiligen Anteilen an der Gesamtstrecke enthält die Tabelle in Anlage 9.

8.8
Variantenbetrachtung zu Maßnahmen

Da die vorgeschlagenen Maßnahmen sowohl zur Herstellung der flussaufwärts als auch der abwärts gerichteten Durchgängigkeit zufriedenstellende Erreichbarkeitsraten realisiert werden können, mussten keine weiteren Varianten betrachtet werden. Mit Durchführung der Maßnahmen kann die Durchgängigkeit des Gewässers sowohl wiederhergestellt werden, dass die diesbezüglichen Voraussetzungen für die Erreichung des guten ökologischen Zustands erfüllt sind.

Eine weitere Absenkung wäre nur durch Rückbau genutzter Querbauwerke möglich.

Die detaillierten Ergebnisse der Variantenbetrachtung befinden sich in den Tabellen der Anlage 10.

Als Konsequenz aus diesen Ergebnissen der Variantenbetrachtung wird vorgeschlagen, keine weiteren Beeinträchtigungen zuzulassen, um den Zustand nicht noch weiter zu verschlechtern. Außerdem müssen längerfristig weitere Querbau-
werke identifiziert werden, die zur Erreichung des guten ökologischen Zustands rückzubauen sind.

8.9
Prüfung nach § 35 WHG

Die Methode und die zu Grunde gelegten Kriterien sind in Kap. 6 näher erläutert. Eine Zusammenstellung der Ergebnisse ist in Anlage 11 zu finden.

Für die Ilm ergeben sich auf Grundlage der benutzten Ansätze theoretisch vier Standorte in der Barbenregion, die noch ein Nutzungspotenzial aufweisen. Das Verhältnis Investition zum Jahresertrag liegt hier zwischen 20 und 30 ist daher eher ungünstig. Einer dieser Standorte ist bereits zum Rückbau vorgesehen. An den übrigen drei Standorten ist eine energetische Nutzung wegen ökologischer Restriktionen unwahrscheinlich.

Damit bleibt festzustellen: An der Ilm besteht bei Anwendung der erläuterten Kriterien kein nennenswertes Ausbaupotenzial für die Wasserkraftnutzung.
Aus den Ergebnissen der Studie lassen sich wesentliche Schlussfolgerungen hinsichtlich der Wasserkraftnutzung an der Ilm ziehen:

- Der Bau zusätzlicher Querbauwerke mit WKA in der Ilm ist angesichts der bestehenden Belastungen nicht vertretbar und würde dem Verschlechterungsverbot der WRRL widersprechen. Das EEG 2009 sieht außerdem für derartige Neuerrichtungen keine Vergütung vor.

- Eine Stau erhöhung an bestehenden Querbauwerken ist angesichts der bereits vorhandenen Überschreitung des ökologisch vertretbaren Lebensraumverlusts negativ zu beurteilen.

Wegen der bestehenden Belastungen und Beeinträchtigungen sollten neben der Wiederherstellung der Durchgängigkeit vielmehr folgende Entwicklungsziele gelten:

- Mittelfristiger Rückbau von weiteren Querbauwerken in und außerhalb der Barbenregion, um die Beeinträchtigung der Fließstrecke zwischen zwei Querbauwerken zu reduzieren.

- Langfristiger Rückbau derjenigen Querbauwerke und Wasserkraftanlagen, deren ökologische Auswirkungen am schwerwiegendsten sind. Dies sind vor allem die sechs Standorte (im Ist-Zustand), zwischen denen die Beeinträchtigung durch Stau und Ausleitung 100 % beträgt (Stauketten).

9

Literatur

DWA (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hrsg.) (2006): DWA-Themen: Funktionskontrolle von Fischaufstiegsanlagen – Auswertung durchgeführter Untersuchungen und Diskussionsbeiträge für Durchführung und Bewertung. – Hennef (DWA - Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.), 123 S.

EBEL, G. (2008): Turbinenbedingte Schädigung des Aales (Anguilla anguilla) - Schädigungsraten an europäischen Wasserkraftanlagenstandorten und Möglichkeiten der Prognose. Mitteilungen aus dem Büro für Gewässerökologie und Fischereiologie Dr. Ebel, Heft 3, 176 S., Halle (Saale)

Durchgängigkeitskonzept Il m

MONTEN (1985): Fish and turbines – Fish injuries during the passage through power station turbines. – Vattenfall, Stockholm. 111 S..

MUNLV NRW (MINISTERIUM FÜR UMWELT UND NATURSCHUTZ, LANDWIRTSCHAFT UND VERBRAUCHERSCHUTZ DES LANDES NORDRHEIN-

PAVLOV, D. S., A. I. LUPANDIN & V. V. KOSTIN (2002): Downstream migration of fish through dams of hydroelectric power plants. - Oak Ridge / Tennessee (Oak Ridge National Laboratory), 249 S.

Internet:
Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>abiotisch</td>
<td>nicht lebend, unbelebt</td>
</tr>
<tr>
<td>anadrom</td>
<td>Art, die sich im Süßwasser fortpflanzt, ihre Entwicklung bis zur Geschlechtsreife jedoch im Meer vollzieht.</td>
</tr>
<tr>
<td>Art</td>
<td>Gemeinschaft von Individuen, die fortpflanzungsfähige Nachkommen haben kann.</td>
</tr>
<tr>
<td>Areal</td>
<td>Gewässerstrecke, die aufgrund geeigneter hydromorphologischer Bedingungen (Gefälle, Abfluss, Substrat) im vom Menschen unbeeinflussten Zustand als potenzieller Lebensraum für eine Art angesehen werden kann.</td>
</tr>
<tr>
<td>Ausbaufallhöhe [m]</td>
<td>Fallhöhe am Kraftwerk bei Ausbaudurchfluss</td>
</tr>
<tr>
<td>Ausbaugrad</td>
<td>Der Ausbaugrad einer Wasserkraftanlage definiert das Verhältnis des Ausbaudurchflusses Q_A zum mittleren Abfluss Q_M.</td>
</tr>
<tr>
<td>Ausbauwassermenge (Ausbaudurchfluss) [m³/s]</td>
<td>Ausbauwassermenge bezeichnet die Menge an Wasser, die ein Kraftwerk maximal pro Sekunde durch seine Turbinen abführen und zur Stromerzeugung nutzen kann.</td>
</tr>
<tr>
<td>Ausleitungskraftwerk</td>
<td>Ein Ausleitungskraftwerk ist ein Wasserkraftwerk, das in einer Ausleitungsstrecke (Umleitungsstrecke) liegt. Ist diese Strecke ein offener Kanal, wird es auch als Kanalkraftwerk bezeichnet.</td>
</tr>
<tr>
<td>Biotop</td>
<td>Lebensraum einer Biozönose mit seinen spezifischen Umwelt- und Lebensbedingungen.</td>
</tr>
<tr>
<td>Biozönose</td>
<td>Gemeinschaft von Pflanzen und Tieren in einem Lebens-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Geschlossenes oder offenes Gewässer, über das Fische vom Oberwasser zum Unterwasser gelangen können und so ein Bauwerk umgehen.</td>
</tr>
<tr>
<td>diadrom</td>
<td>Art, deren Lebenszyklus einen obligaten Wechsel zwischen Lebensräumen im Meer und in Binnengewässern umfasst.</td>
</tr>
<tr>
<td>Effektivitätsrate</td>
<td>Oberbegriff für Erreichbarkeits-, Arealnutzungs- und Gesamtüberlebensrate</td>
</tr>
<tr>
<td>Fallhöhe [m]</td>
<td>Die Kraftwerksfallhöhe ist der Höhenunterschied zwischen dem Oberwasserspiegel vor dem Rechen und dem Unterwasserspiegel hinter dem Saugschlauch eines Kraftwerkes, gemessen als Pegeldifferenz.</td>
</tr>
<tr>
<td>Flusskraftwerk</td>
<td>Ein Flusskraftwerk ist ein Wasserkraftwerk, das mit seinen wesentlichen Anlageteilen im Flusslauf liegt. Bauweisen sind z.B. Pfeilerkraftwerk, Buchtenkraftwerk.</td>
</tr>
<tr>
<td>Fließgewässerzonierung</td>
<td>Einteilung des Längsverlaufs der Fließgewässer in Zonen (Regionen) anhand Gefälle und Breite. Jede Region wird von einer typischen Fischartengemeinschaft (Ichthyozöose) besiedelt, die durch eine Leitfischart charakterisiert wird.</td>
</tr>
<tr>
<td>Krenal (Quelle)</td>
<td>nicht von Fischen besiedelt</td>
</tr>
<tr>
<td>Epi-Rhithral</td>
<td>Obere (Bach-) Forellenregion</td>
</tr>
<tr>
<td>Meta-Rhithral</td>
<td>Untere (Bach-) Forellenregion</td>
</tr>
<tr>
<td>Hypo-Rhithral</td>
<td>Äschenregion</td>
</tr>
<tr>
<td>Epi-Potamal</td>
<td>Barbenregion</td>
</tr>
<tr>
<td>Meta-Potamal</td>
<td>Brachsenregion</td>
</tr>
<tr>
<td>Hypo-Potamal</td>
<td>Kaulbarsch-Flunderregion</td>
</tr>
<tr>
<td>Begriff</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gesamtüberlebensrate</td>
<td>Anteil der Fische, der nach dem Abstieg in einem definier-
ten Folgegewässer oder Meer lebend ankommt, wenn 100 % aus einem Einzugsgebiet oder Gewässer startet. Es muss immer der Bezugsrahmen angeben werden, z.B. aus dem Ilm-Einzugsgebiet zur Saale.

Gesamtüberlebensrate = 100 % - Gesamtmortalitätsrate</td>
</tr>
<tr>
<td>Guter ökologischer Zustand GÖZ</td>
<td>Zustand eines entsprechenden Oberflächenwasserkörpers gemäß der Einstufung nach Anhang V der EG – WRRL.</td>
</tr>
<tr>
<td>Habitat</td>
<td>Aufenthaltsbereich von Pflanzen und Tieren innerhalb eines Biotops.</td>
</tr>
<tr>
<td>Installierte Leistung [kW], [MW]</td>
<td>Leistung an den Generatorklemmen</td>
</tr>
<tr>
<td>Jahresdauerkurve oder – Jahresdauerlinie</td>
<td>Häufigkeitsverteilung von Abflüssen, geordnetes Abflussregime</td>
</tr>
<tr>
<td>katadrom</td>
<td>Art, die sich im Meer fortpflanzt, ihre Entwicklung bis zur Geschlechtsreife jedoch im Süßwasser vollzieht.</td>
</tr>
<tr>
<td>laterale Durchgängigkeit</td>
<td>Permanente oder temporäre Durchgängigkeit zwischen Fließ- und Auegewässern im Sinne der Biotopvernetzung.</td>
</tr>
<tr>
<td>Leistung [kW], [MW]</td>
<td>Die (elektrische) Leistung ist als (elektrische) Arbeit pro Zeiteinheit definiert. Unter der Leistung einer WKA ist die elektrische Wirkleistung zu verstehen. Die Leistungsangabe bezieht sich dabei auf die an den Klemmen der elektrischen Maschine gemessenen Werte. Im Turbinenbetrieb misst man an den Klemmen des Generators die Brutto-Leistung. Die Netto-Leistung ergibt sich nach Abzug der Eigenbedarfsleistung des Kraftwerks und...</td>
</tr>
<tr>
<td>Begriff</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Durchgängigkeitskonzept Il m</td>
<td></td>
</tr>
<tr>
<td>Begriff</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>Leitart</td>
<td>Art, die eine bestimmte Fließgewässerregion besiedelt. Sind keine Störeinflüsse vorhanden, dominiert zumeist die Leitart den Bestand.</td>
</tr>
<tr>
<td>lineare Durchgängigkeit</td>
<td>Durchwanderbarkeit eines Fließgewässersystems für Fische und Makrozoobenther.</td>
</tr>
<tr>
<td>Mindestabfluss Q_{min}</td>
<td>Die unterhalb eines Ausleitungswehr es im natürlichen Flussbett (Mutterbett) verbleibende Wassermenge. Erforderlicher Abfluss in der Ausleitungsstrecke.</td>
</tr>
<tr>
<td>Mittelwasserabfluss MQ</td>
<td>Der Mittelwasserabfluss ist der arithmetische Mittelwert der Abflüsse in einer bestimmten anzugrebbaren Zeitspanne.</td>
</tr>
<tr>
<td>Mortalität</td>
<td>Zusammenfassender Begriff für die Schädigung von Fischen durch Tod oder Verletzung während der Abwanderung, die zum Ausfall des Individuums für die Reproduktion der Art führt. Die Mortalität während anderer Phasen des Entwicklungszyklus werden hierbei nicht betrachtet.</td>
</tr>
<tr>
<td>Nennleistung P_n $[\text{kW}, \text{MW}]$</td>
<td>Die Nennleistung einer Erzeugungs-, Übertragungs- und Verbrauchs anlage ist die höchste Dauerleistung, für die sie gemäß den Liefervereinbarungen bestellt ist. Der Begriff der Nennleistung wird bei Wasserkraftwerken üblicherweise nur für einzelne Maschinen und Maschinen- sätze verwendet.</td>
</tr>
<tr>
<td>Nenndurchfluss Q_n</td>
<td>$= \text{Durchfluss bei Nennleistung}$</td>
</tr>
<tr>
<td>Nettofallhöhe $[\text{m}]$</td>
<td>Bruttofallhöhe h_f minus Verlusthöhe h_r</td>
</tr>
<tr>
<td>Netzeinspeisung $[\text{MWh/a}], [\text{GWh/a}]$</td>
<td>Energiemenge (inkl. Verluste), die an das Netz (Strom, Fernwärme) innerhalb eines Jahres abgegeben wird.</td>
</tr>
<tr>
<td>potamodrom</td>
<td>Art, die alle Entwicklungsstadien im Süßwasser durchläuft und mehr oder weniger ausgedehnte Wanderbewegungen zwischen unterschiedlichen Lebensräumen unternimmt.</td>
</tr>
<tr>
<td>potenziell natürliche Fischfauna</td>
<td>Zu dieser zählen alle Arten, die ursprünglich in einem Gewässersystem heimisch waren und aktuell einen geeigneten Lebensraum vorfinden oder in absehbarer Zukunft wieder</td>
</tr>
<tr>
<td>Begriff</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Population</td>
<td>Fortpflanzungsgemeinschaft einer Art.</td>
</tr>
<tr>
<td>rheophil</td>
<td>Art, die strömungsgeprägte Gewässer besiedelt.</td>
</tr>
<tr>
<td>Reproduktion</td>
<td>Fortpflanzung</td>
</tr>
<tr>
<td>rezente Nachweise</td>
<td>Nachweise des Vorkommens einer Art anhand von Lebendfunden aus den letzten 10 Jahren (im Gegensatz zu Nachweisen anhand von Sammlungen, Bildern, Dokumenten etc.).</td>
</tr>
<tr>
<td>rhithral</td>
<td>Art der Bäche</td>
</tr>
<tr>
<td>Standort</td>
<td>Als Standort wird der gesamte von einem Querbauwerk, einer Wasserkraft- oder sonstigen Wassernutzungsanlage beeinflusste Gewässerbereich definiert. Er reicht von der Stauwurzel bis zur Einmündung eines eventuell vorhandenen Unterwasserkanals.</td>
</tr>
<tr>
<td>Smolts</td>
<td>Ins Meer abwandernde Junglachse mit typisch silbriger Färbung.</td>
</tr>
<tr>
<td>stagnophil</td>
<td>Art, die ruhig strömende bzw. stehende Gewässer besiedelt.</td>
</tr>
<tr>
<td>Technisches Potenzial [kWh], [MWh], [GWh]</td>
<td>Das technische Wasserkraftpotenzial ergibt sich aus dem nutzbaren Potenzial an einem Standort unter Berücksichtigung der technischen Wirkungsgrade der Maschinen, die das theoretisch vorhandene Wasserkraftpotenzial in nutzbare Energie z.B. Strom umwandeln.</td>
</tr>
<tr>
<td>Technisch-Wirtschaftliches Potenzial [kWh], [MWh], [GWh]</td>
<td>Als Technisch-Wirtschaftliches Wasserkraftpotenzial wird jenes Wasserkraftpotenzial verstanden, welches unter den gegebenen technischen und mittleren wirtschaftlichen Rahmenbedingungen sinnvoll erschlossen werden kann.</td>
</tr>
<tr>
<td>Überlebensrate</td>
<td>Der Prozentsatz der nicht letal geschädigten Exemplare an der betrachteten Gesamtheit abwandernder Fische an einem Standort oder einem betrachteten Gewässerabschnitt wird als Überlebensrate bezeichnet. Sie errechnet sich nach der Formel: Überlebensrate = 100 % - Mortalitätsrate</td>
</tr>
<tr>
<td>Verlusthöhe h, [m]</td>
<td>Verlust an Fallhöhe (Druckverlust) durch das fließende Wasser; z.B. durch Rohrreibung, bei Schützen, Schiebern</td>
</tr>
<tr>
<td>Begriff</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Vollanstunden [h/a]</td>
<td>Jahresenergieerzeugung (kWh/a) geteilt durch die Ausbauleistung (kW).</td>
</tr>
<tr>
<td>Wanderweg</td>
<td>Bezeichnung der Strecke innerhalb einer Fischaufstiegsanlage, die von den Fischen genommen werden kann.</td>
</tr>
<tr>
<td>Wanderpfad, Wanderweg</td>
<td>Für den Auf- und Abstieg an einem Standort gibt es verschiedene Wanderpfade oder Wanderwege zur Auswahl. Mögliche Wanderpfade sind z.B. der Weg über das Wehr oder über die WKA.</td>
</tr>
<tr>
<td>Wanderroute</td>
<td>Als Wanderroute wird die gesamte Gewässerstrecke zwischen einem bestimmten Areal oder einem Laich- und Aufwuchshabitat und dem Meer betrachtet.</td>
</tr>
<tr>
<td>Zielarten</td>
<td>Zur Erreichung des guten ökologischen Zustands müssen vor allem diejenigen Arten geschützt werden, deren gewässertypischen Populationen durch Schäden bei der Turbinenpassage bzw. durch die Unterbrechung der flussabwärts gerichteten Wanderung, gefährdet sind (MUNLV 2005)</td>
</tr>
</tbody>
</table>
Abkürzungen und Formelzeichen

<table>
<thead>
<tr>
<th>Abkürzung/ Formelzeichen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_E</td>
<td>Einzugsgebietsgröße [km²]</td>
</tr>
<tr>
<td>$AE_{OWPegel}$</td>
<td>Einzugsgebietsgröße am Oberwasserseitigen Pegel [km²]</td>
</tr>
<tr>
<td>$AE_{UWPegel}$</td>
<td>Einzugsgebietsgröße am Unterwasserseitigen Pegel [km²]</td>
</tr>
<tr>
<td>AE_{Wehr}</td>
<td>Einzugsgebietsgröße des Standorts [km²]</td>
</tr>
<tr>
<td>AE_{Pegel}</td>
<td>Einzugsgebietsgröße des Pegels [km²]</td>
</tr>
<tr>
<td>A_S</td>
<td>Senkrecht zur Fließrichtung projizierte Anströmfläche des Rechens [m²]</td>
</tr>
<tr>
<td>C</td>
<td>Konstante zur Bestimmung der Investitionskosten [Euro]</td>
</tr>
<tr>
<td>DGJ</td>
<td>Deutsches Gewässerkundliches Jahrbuch</td>
</tr>
<tr>
<td>DWA</td>
<td>Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.</td>
</tr>
<tr>
<td>E_A</td>
<td>Jahresarbeit [kWh]</td>
</tr>
<tr>
<td>EU-WRRL</td>
<td>Europäische Wasserrahmenrichtlinie</td>
</tr>
<tr>
<td>EEG 2000</td>
<td>Erneuerbare Energien Gesetz</td>
</tr>
<tr>
<td>FAA</td>
<td>Fischaufstiegsanlage</td>
</tr>
<tr>
<td>FFH</td>
<td>Fauna-Flora-Habitat</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographisches Informationssystem</td>
</tr>
<tr>
<td>h_a / h_l</td>
<td>Ausbaufallhöhe [m]</td>
</tr>
<tr>
<td>IBFM</td>
<td>Ingenieurbüro Floecks mühle</td>
</tr>
<tr>
<td>K</td>
<td>Kosten, hier Investitionskosten [Euro]</td>
</tr>
<tr>
<td>LUWG</td>
<td>Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht, Rheinland-Pfalz</td>
</tr>
<tr>
<td>Abkürzung/ Formelzeichen</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MHQ</td>
<td>mittlerer höchster Abfluss [m³/s]</td>
</tr>
<tr>
<td>MNQ</td>
<td>mittlerer niedrigster Abfluss [m³/s]</td>
</tr>
<tr>
<td>MQ</td>
<td>Mittlerer jährlicher Abfluss [m³/s]</td>
</tr>
<tr>
<td>PA / P</td>
<td>Ausbauleistung [kW]</td>
</tr>
<tr>
<td>qaafb.gr</td>
<td>Großräumige Auffindbarkeitsrate eines Wanderwegs (Querbauwerk, Wasserkraftanlage oder sonstiger Gewässerarm)</td>
</tr>
<tr>
<td>qaafb.kl</td>
<td>Kleinräumige Auffindbarkeitsrate eines Wanderwegs</td>
</tr>
<tr>
<td>qauf</td>
<td>Aufwanderrate eines Wanderwegs bzw. eines Querbauwerksstandorts</td>
</tr>
<tr>
<td>qpass</td>
<td>Passierbarkeitsrate</td>
</tr>
<tr>
<td>QBW</td>
<td>Querbauwerk</td>
</tr>
<tr>
<td>Q₃₀</td>
<td>Abfluss, der im Jahr an 30 Tagen unterschritten wird [m³/s]</td>
</tr>
<tr>
<td>Q₃₃₀</td>
<td>Abfluss, der im Jahr an 330 Tagen unterschritten wird [m³/s]</td>
</tr>
<tr>
<td>Q_{FAA}</td>
<td>Betriebsabfluss einer Fischaufstiegsanlage [m³/s] bzw. [l/s]</td>
</tr>
<tr>
<td>Q_{FAB}</td>
<td>Betriebsabfluss einer Fischabstiegsanlage bzw. eines Bypasses [m³/s] bzw. [l/s]</td>
</tr>
<tr>
<td>Q_{Pegel}</td>
<td>jeweils Abfluss am Pegel [m³/s]</td>
</tr>
<tr>
<td>Q_{OWPegel}</td>
<td>jeweils Abfluss am oberwasserseitigen Pegel [m³/s]</td>
</tr>
<tr>
<td>Q_{UWPegel}</td>
<td>jeweils Abfluss am unterwasserseitigen Pegel [m³/s]</td>
</tr>
<tr>
<td>Q_{Wehr}</td>
<td>jeweils Abfluss am Standort [m³/s]</td>
</tr>
<tr>
<td>QA / Q_{Entnahme}</td>
<td>Ausbaudurchfluss einer WKA bzw. Entnahmemasse an einer Ausleitung [m³/s]</td>
</tr>
<tr>
<td>sₘ</td>
<td>Überlebensrate bei der Passage eines Querbauwerks oder einer Wasserkraftanlage durch die Turbine oder Schutzrate bzw. Abweisrate einer mechanischen Barriere vor der Turbine (Rechen) in Anhängigkeit der zu schützenden Zielart</td>
</tr>
<tr>
<td>sₘₐb</td>
<td>Abwanderrate eines Wanderwegs bzw. eines Querbauwerksstandorts</td>
</tr>
<tr>
<td>TLUG</td>
<td>Thüringer Landesanstalt für Umwelt und Geologie Jena</td>
</tr>
<tr>
<td>vₐₐ</td>
<td>Anströmgeschwindigkeit vor einer mechanischen Barriere (Rechen)</td>
</tr>
<tr>
<td>Abkürzung/ Formelzeichen</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>[m/s]</td>
<td></td>
</tr>
<tr>
<td>WHG</td>
<td>Wasserhaushaltsgesetz</td>
</tr>
<tr>
<td>WKA</td>
<td>Wasserkraftanlage (n)</td>
</tr>
<tr>
<td>y</td>
<td>Konstante zur Bestimmung der Investitionskosten [-]</td>
</tr>
</tbody>
</table>
Anlagenverzeichnis

Anlage 1: Hydrologie
Anlage 2: Standortbeschreibungen, inkl. Fotodokumentation auf CD
Anlage 3: Bewertungstabellen im Ist-Zustand für Gewässerstrecke
Anlage 4: Dimensionierung der Fischaufstiegsanlagen
Anlage 5: Maßnahmenkonzepte (Pläne)
Anlage 6: Bewertungstabellen im Plan-Zustand (Maßnahmenkonzepte) für Gewässerstrecke
Anlage 7: Schätzung der Baukosten
Anlage 8: Mindererzeugung durch ökologische Abflüsse und Vergütung
Anlage 9: Beeinträchtigung durch Stau und Ausleitung
Anlage 10: Variantenbetrachtung für die Gesamtstrecke
Anlage 11: Wasserkraftpotenzial